Author: Gassot, H.
Paper Title Page
MOPAB379 Topological Optimization on SRF Cavities for Nuclear and High Energy Physics 1162
 
  • H. Gassot
    Université Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France
 
  Topology optimization has been developed for more than twenty years. The progress of additive manufacturing boosts the development in topological optimization since the design can be completely innovated and realized by 3D printing. The potential for cost reductions thanks to weight minimization give an interesting perspective for the small production of niobium superconducting radio-frequency cavities, commonly used in accelerators. The traditional manufacturing technologies of cavities are based on multi-stage processes while additive manufacturing technologies can built fully functional parts in a single operation. For modern accelerators that use superconducting linac, including energy recovery linacs (ERLs), it is particularly important to know the perspectives of additive manufacturing for SRF cavities. In this paper, we try to build a preliminary perception of topological optimization in superconducting cavities manufacturing innovation.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB379  
About • paper received ※ 11 May 2021       paper accepted ※ 17 August 2021       issue date ※ 15 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)