Paper | Title | Page |
---|---|---|
MOPAB002 | Risk of Halo-Induced Magnet Quenches in the HL-LHC Beam Dump Insertion | 41 |
|
||
Funding: Research supported by the HL-LHC project After the High Luminosity (HL-LHC) upgrade, the LHC will be exposed to a higher risk of magnet quenches during periods of short beam lifetime. Collimators in the extraction region (IR6) assure the protection of magnets against asynchronous beam dumps, but they also intercept a fraction of the beam halo leaking from the betatron cleaning insertion. In this paper, we assess the risk of quenching nearby quadrupoles during beam lifetime drops. In particular, we present an empirical analysis of halo losses in IR6 using LHC Run 2 (2015-2018) beam loss monitor measurements. Based on these results, the halo-induced power density in magnet coils expected in HL-LHC is estimated using FLUKA Monte Carlo shower simulations. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB002 | |
About • | paper received ※ 19 May 2021 paper accepted ※ 13 July 2021 issue date ※ 22 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPAB013 | Radiation to Electronics Impact on CERN LHC Operation: Run 2 Overview and HL-LHC Outlook | 80 |
|
||
Funding: Research supported by the HL-LHC project After the mitigation measures implemented during Run 1 (2010-2012) and Long Shutdown 1 (LS1, 2013-2014), the number of equipment failures due to radiation effects on electronics (R2E) leading to LHC beam dumps and/or machine downtime has been sufficiently low as to yield a minor impact on the accelerator performance. During Run 2 (2015-2018) the R2E related failures per unit of integrated luminosity remained below the target value of 0.5 events/fb-1, with the sole exception of the 2015 run during which the machine commissioning took place. However, during 2018, an increase in the failure rate was observed, linked to the increased radiation levels in the dispersion suppressors of the ATLAS and CMS experimental insertions, significantly affecting the Quench Protection System located underneath the superconducting magnets in the tunnel. This work provides an overview of the Run 2 R2E events during LHC proton-proton operation, putting them in the context of the related radiation levels and equipment sensitivity, and providing an outlook for Run 3 and HL-LHC operation. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB013 | |
About • | paper received ※ 19 May 2021 paper accepted ※ 23 July 2021 issue date ※ 23 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |