Author: Gabriel, A.E.
Paper Title Page
MOPAB141 Terahertz Driven Compression and Time-Stamping Technique for Single-Shot Ultrafast Electron Diffraction 492
 
  • M.A.K. Othman, A.E. Gabriel, M.C. Hoffmann, F. Ji, E.A. Nanni, X. Shen, E.J.C. Snively, X.J. Wang
    SLAC, Menlo Park, California, USA
 
  Funding: This research has been supported by the U.S. Department of Energy (DOE) under Contract No. DE-AC02-76SF00515 and DE-AC02-05-CH11231.
Ultrafast structural dynamics are well understood through pump-probe characterization using ultrafast electron diffraction (UED). Advancements in electron diffraction and spectroscopy techniques open new frontiers for scientific discovery through interrogation of ultrafast phenomena, such as quantum phase transitions. Previously, we have demonstrated that strong-field THz radiation can be utilized to efficiently manipulate and compress ultrafast electron probes *, and also offer temporal diagnostics with sub-femtosecond resolution ** enabled by the inherent phase locking of THz radiation to the photoemission optical drive. In this work, we demonstrate a novel THz compression and time-stamping technique to probe solid-state materials at time scales previously inaccessible with standard UED. A high-frequency THz generation method using the organic OH-1 crystals is employed to enable a threefold reduction in the electron probes length and overall timing jitter. These time-stamped probes are used to demonstrate a substantial enhancement in the UED temporal resolution using pump-probe measurement in both photoexcited single crystal and polycrystalline samples.
* E. C. Snively et al., Phys. Rev. Lett, vol. 124, no. 6, p. 054801, 2020.
** R. K. Li et al., Phys. Rev. Accel. Beams, vol. 22, no. 1, p. 012803, Jan. 2019.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB141  
About • paper received ※ 20 May 2021       paper accepted ※ 21 June 2021       issue date ※ 19 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB144 Investigation of Optimization of Dielectric Terahertz Acceleration Structures 502
 
  • A.E. Gabriel, E.A. Nanni
    SLAC, Menlo Park, California, USA
 
  Funding: This work was supported by the Department of Energy Contract No. DE-AC02-76SF00515 (SLAC) and by NSF Grant No. PHY-1734015.
THz-frequency accelerating structures could provide the accelerating gradients needed for next generation particle accelerators with compact, GV/m-scale devices. Current THz accelerators are limited by significant losses during transport of THz radiation from the generating nonlinear crystal to the electron acceleration structure. In addition, the spectral properties of high-field THz sources make it difficult to couple THz radiation into accelerating structures. Dielectric accelerator structures reduce these losses because THz radiation can be coupled laterally into the structure, as opposed to metallic structures where THz radiation must be coupled along the beam path. In order to utilize these advantages, we are investigating the optimization of THz accelerating structures for comparison between metallic and dielectric devices. These results will help to inform future designs of improved dielectric THz acceleration structures.
 
poster icon Poster MOPAB144 [6.524 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB144  
About • paper received ※ 20 May 2021       paper accepted ※ 27 May 2021       issue date ※ 22 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)