Author: Foggetta, L.G.
Paper Title Page
TUXB05
Intense Channeling Radiation as a Tool for a Hybrid Crystal-Based Positron Source for Future Colliders  
 
  • L. Bandiera, A. Mazzolari, M. Romagnoni, A.I. Sytov
    INFN-Ferrara, Ferrara, Italy
  • L. Bomben, V. Mascagna
    INFN MIB, MILANO, Italy
  • G. Cavoto
    INFN-Roma, Roma, Italy
  • I. Chaikovska, R. Chehab
    Université Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France
  • D. De Salvador
    Univ. degli Studi di Padova, Padova, Italy
  • L.G. Foggetta
    INFN/LNF, Frascati, Italy
  • E. Lutsenko, M. Prest
    Università dell’Insubria & INFN Milano Bicocca, Como, Italy
  • M. Soldani
    Università degli Studi di Ferrara, Ferrara, Italy
  • V.V. Tikhomirov
    INP BSU, Minsk, Belarus
  • E. Vallazza
    INFN-Trieste, Trieste, Italy
 
  There is a strong need for intense positron sources for future colliders. A crystal-based hybrid positron source could be an alternative to conventional sources based on the e- conversion into e+ in a thick target. The basic idea of the hybrid source is to split the e+ converter into a gamma-quanta radiator plus a gamma-to-positron converter*. In such a scheme an e- beam crosses a thin axially oriented crystal with emission of "channeling radiation", characterized by a considerably larger amount of photons w.r.t. standard bremsstrahlung**. The net result is an increase in the number of e+ produced at the converter target. In the hybrid scheme, only photons reach the converter, thereby reducing the Peak Energy Deposition Density (PEDD) in the target. Here we present the results of a test conducted at the DESY TB with 5.6 GeV e- interacting with a W crystal. A huge enhancement in the radiated energy and in the photon emission has been recorded and reproduced with Monte Carlo simulations***. This study is relevant for the design of the FCC-ee positron source. Indeed, through Monte Carlo, we also investigated the best parameters of the crystal radiator suited for the FCC-ee e+ source.
* R. Chehab et al. PAC’89,10.1109/PAC.1989.73147
** X.Artru et al. NIMB 266 (2008) 3868
*** A. Sytov, V. Tikhomirov, L. Bandiera PRAB 22 (2019) 064601
 
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB001 DAΦNE Commissioning for SIDDHARTA-2 Experiment 1322
 
  • C. Milardi, D. Alesini, O.R. Blanco-García, M. Boscolo, B. Buonomo, S. Cantarella, A. D’Uffizi, A. De Santis, C. Di Giulio, G. Di Pirro, A. Drago, L.G. Foggetta, G. Franzini, A. Gallo, S. Incremona, A. Michelotti, L. Pellegrino, L. Piersanti, R. Ricci, U. Rotundo, L. Sabbatini, A. Stecchi, A. Stella, A. Vannozzi, M. Zobov
    INFN/LNF, Frascati, Italy
  • J. Chavanne, G. Le Bec, P. Raimondi
    ESRF, Grenoble, France
 
  DAΦNE, the Frascati lepton collider, has completed the preparatory phase in order to deliver luminosity to the SIDDHARTA-2 detector. DAΦNE colliding rings rely on a new interaction region, which implements the well-established Crab-Waist collision scheme, and includes a low-beta section equipped with newly designed permanent magnet quadrupoles, and vacuum components. Diagnostics tools have been improved, especially the ones used to keep under control the beam-beam interaction. The horizontal feedback in the positron ring has been potentiated in order to achieve a higher positron current. Luminosity diagnostics have been also updated so to be compatible with the new detector design. The commissioning was initially focused on recovering the optimal dynamical vacuum conditions, outlining alignment errors, and optimizing ring optics. For this reason, a detuned optics, featured by relaxed low-b condition at the interaction point and Crab-Waist Sestupoles off, has been applied. In a second stage a low-b optics has been implemented to test collisions with a preliminary setup of the experiment detector. Machine preparation and the first luminosity results are presented and discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB001  
About • paper received ※ 19 May 2021       paper accepted ※ 09 June 2021       issue date ※ 10 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB113 The Extended Operative Range of the LNF LINAC and BTF Facilities 3987
 
  • L.G. Foggetta, M. Belli, B. Buonomo, F. Cardelli, R. Ceccarelli, A. Cecchinelli, R. Clementi, D. Di Giovenale, C. Di Giulio, G. Piermarini, L.A. Rossi, S. Strabioli, R. Zarlenga
    INFN/LNF, Frascati, Italy
 
  Funding: These activities has been partially supported by AIDA-2020 Grant Agreement 654168 and ERAD projects.
In 2020 the INFN-LNF LINAC and BTF have performed long-term runs for test beams and fixed-target experiments. The scientific needs of these items have been leading our groups to continuous improvements of the LINAC operative range both in pulse time at maximum energy and on the minimum transported energy, until the reset to DAΦNE injections at the beginning of 2021. We will also show the BTF recent developments in the transported beams and the second line installation.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB113  
About • paper received ※ 19 May 2021       paper accepted ※ 27 July 2021       issue date ※ 27 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)