Author: Farvacque, L.
Paper Title Page
MOXA01 Commissioning and Restart of ESRF-EBS 1
 
  • S.M. White, N. Carmignani, L.R. Carver, J. Chavanne, L. Farvacque, L. Hardy, J. Jacob, G. Le Bec, S.M. Liuzzo, T.P. Perron, Q. Qin, P. Raimondi, J.-L. Revol, K.B. Scheidt
    ESRF, Grenoble, France
 
  The ESRF operates a 6 GeV 4th generation light source, the ESRF-EBS. This storage ring is the first to implement the Hybrid Multi-Bend Achromat lattice (HMBA). The HMBA lattice provides a reduction of the horizontal emittance of approximately a factor 30 with respect to the former Double Bend Achromat (DBA) structure, considerably improving the brilliance and transverse coherence of the ESRF accelerator complex while maintaining large horizontal acceptance and excellent lifetime performance. In this report, the characteristics of the HMBA lattice will be reviewed and the beam commissioning results and first operation experience of the new ESRF storage ring will be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOXA01  
About • paper received ※ 11 May 2021       paper accepted ※ 31 August 2021       issue date ※ 01 September 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB048 HMBA Optics Correction Experience at ESRF 1462
 
  • S.M. Liuzzo, N. Carmignani, L.R. Carver, L. Farvacque, T.P. Perron, P. Raimondi, S.M. White
    ESRF, Grenoble, France
 
  The ESRF-EBS storage ring, successfully commissioned in 2020, operates the HMBA lattice, first proposed in * and then adopted in several recent upgrade programs. The successful and timely commissioning of the storage is in large part due to the excellent optics control achieved over that period. Design performance were obtained with lower than predicted correction strengths, localized for the most part in the vicinity of sextupoles. This remarkable behavior is not only the result of the corrective actions taken during the commissioning but also of the extremely accurate conception and alignment of the machine. This report summarizes the steps that lead to the present performances and discusses their stability over time.
* J.Biasci et al. Synchrotron Radiation News27, 8 (2014), https://doi.org/10.1080/08940886.2014.970931.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB048  
About • paper received ※ 10 May 2021       paper accepted ※ 11 June 2021       issue date ※ 20 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)