Paper | Title | Page |
---|---|---|
WEPAB213 | Optimization of Antiproton-Atom Collision Studies Using GEANT4 | 3126 |
|
||
Funding: This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 721559. The interaction between antiprotons and hydrogen or helium atoms is a fundamental problem in many-particle atomic physics, attracting strong interest from both theory and experiments. Atomic collisions are ideal to study the three and four-body Coulomb problem as the number of possible reaction channels is limited. Currently, only the total cross-sections of such interactions have been measured in an energy range between keV and a few MeV. This contribution investigates the discrepancies between different theories and available experimental data. It also describes a pathway for obtaining differential cross-sections. A purpose-designed experimental setup is presented and detailed Geant4 simulations provide an insight into the interaction between short (ns) antiproton bunches and a dense gas-jet target. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB213 | |
About • | paper received ※ 23 May 2021 paper accepted ※ 30 June 2021 issue date ※ 24 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPAB214 | Realistic Simulations of Stray Field Impact on Low Energy Transfer Lines | 3130 |
|
||
Funding: This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 721559. Low energy (~100 keV) facilities working with antiprotons, heavy ions, or charged molecules may experience severe beam transport instabilities caused by field imperfections. For example, long (~10 m), unshielded beamlines will not be able to transfer particles due to the natural Earth magnetic field or stray fields from closely located experiments. Currently, only a limited number of simulation codes allow a simplified representation of such field errors, limiting capabilities for beam delivery optimization. In this contribution, a new simulation approach is presented that can provide detailed insight into 4D beam transport. It illustrates the impact of imperfections and stray fields on beam stability and quality through simulations of two antiproton experiments located in the Antimatter Factory (AD) at CERN in Geneva, Switzerland. Magnetic field imperfections are examined in two different ways, providing greater flexibility and an opportunity to benchmark all outcomes. Simulation performance is analyzed as a function of the level of detail and efficiency. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB214 | |
About • | paper received ※ 19 May 2021 paper accepted ※ 12 July 2021 issue date ※ 18 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THXA06 | The Effect of Beam Velocity Distribution on Electron-Cooling at Elena | 3700 |
|
||
Funding: Work supported by EU Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 721559. ELENA is a novel storage ring at CERN, designed to deliver low energy, high-quality antiprotons to antimatter experiments. The electron cooler is a key component of this decelerator, which counters the beam blow-up as the antiproton energy is reduced from 5.3 MeV to 100 keV. Typical numerical approximations on electron cooling processes assume that the density distribution of electrons in analytical form and the velocity distribution space to be Maxwellian. However, it is useful to have an accurate description of the cooling process based on a realistic electron distribution. In this contribution, BETACOOL simulations of the ELENA antiproton beam phase space evolution were performed using uniform, Gaussian, and "hollow beam" electron velocity distributions. The results are compared with simulations considering a custom electron beam distribution obtained with G4beamline. The program was used to simulate the interaction of an initially Gaussian electron beam with the magnetic field measured inside the electron cooler interaction chamber. The resulting beam lifetime and equilibrium parameters are then compared with measurements. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THXA06 | |
About • | paper received ※ 18 May 2021 paper accepted ※ 01 July 2021 issue date ※ 14 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |