Author: Eshraqi, M.
Paper Title Page
TUPAB175 ESSnuSB Linac and Transfer Line: Lattice Design and Error Studies 1805
 
  • N. Blaskovic Kraljevic, M. Eshraqi, B.T. Folsom
    ESS, Lund, Sweden
 
  Funding: ESSnuSB has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 777419.
The ESS neutrino superbeam (ESSnuSB) project is being studied as an upgrade to the European Spallation Source (ESS). This proposed upgrade consists of adding an H source to the existing beamline in order to send H pulses in between proton pulses, effectively doubling the beam power from 5 MW to 10 MW. In this contribution, we present the 2.5 GeV linear accelerator (linac) lattice and the design of the transfer line from the linac to the accumulator ring, where pulses would be stacked to achieve short proton pulses of high intensity. The results of error studies, quantifying the effect of accelerator imperfections and H ion stripping losses on the beam transport through the linac and transfer line, are also presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB175  
About • paper received ※ 19 May 2021       paper accepted ※ 14 June 2021       issue date ※ 31 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB176 ESS Proton Beam Trajectory Correction 1809
 
  • N. Blaskovic Kraljevic, M. Eshraqi, N. Milas, R. Miyamoto
    ESS, Lund, Sweden
 
  The proton linac of the European Spallation Source (ESS) is under construction in Lund, Sweden. Beam trajectory correction is essential to mitigate the effect of accelerator element misalignment, constituting the first step to minimise beam losses. The correction will be performed using correctors distributed along the accelerator, based on the beam position monitor (BPM) readout. Three trajectory correction techniques are considered: one-to-one steering, Singular Value Decomposition (SVD), and MICADO (selecting a subset of correctors for the trajectory correction). The performance of the three methods is simulated for the ESS linac and a comparison of the outcomes is presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB176  
About • paper received ※ 19 May 2021       paper accepted ※ 15 June 2021       issue date ※ 27 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)