Paper | Title | Page |
---|---|---|
MOPAB052 | Study of Beam Transmission Efficiency in Injection and Ramping Process of the HEPS Booster | 225 |
|
||
A high-bunch-charge mode, with a bunch charge of approximately 14.4 nC at 200 mA, has been proposed for the storage ring of High Energy Photon Source (HEPS). In order to reduce the bunch charge requirement to the injector, high-energy accumulation in the HEPS booster is proposed to combine with the on-axis swap-out injection. This allows reducing the requirement of bunch charge accelerated in HEPS booster (500 MeV-6 GeV) from over 14.4 nC to about 5 nC. It is expected that the overall transmission efficiency during the low energy injection and ramping process of the booster should be higher than 80% to fulfill the requirement. In this paper, we present the simulation results of transmission efficiency and potential improvement measures. | ||
![]() |
Poster MOPAB052 [0.362 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB052 | |
About • | paper received ※ 13 May 2021 paper accepted ※ 26 May 2021 issue date ※ 15 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPAB053 | Progress of Lattice Design and Physics Studies on the High Energy Photon Source | 229 |
|
||
Funding: Work supported by High Energy Photon Source (HEPS), a major national science and technology infrastructure and NSFC (11922512) The High Energy Photon Source (HEPS) is a 34-pm, 1360-m storage ring light source being built in the suburb of Beijing, China. The HEPS construction started in mid-2019. While the physics design has been basically determined, modifications on the HEPS accelerator physics design have been made since 2019, in order to deal with challenges emerging from the technical and engineering designs. In this paper, we will introduce the new storage ring lattice and injector design, and also present updated results of related physics issues, including impedance and collective effects, lattice calibration, insertion device effects, injection design studies, etc. |
||
![]() |
Poster MOPAB053 [0.699 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB053 | |
About • | paper received ※ 10 May 2021 paper accepted ※ 24 May 2021 issue date ※ 17 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPAB008 | Progress of the First-Turn Commissioning Simulations for HEPS | 1349 |
|
||
The High Energy Photon Source (HEPS) is 6 GeV, kilometer-scale, 4th generation storage ring light source. The lattice has an ultralow emittance and strong focusing such that the beam dynamics is very sensitive to the magnet misalignments and other error sources. Getting the first turn and establishing the closed orbit is essential for accelerator commissioning. This paper describes a simulation algorithm for achieving the first turn commission based on the latest HEPS storage ring lattice. We developed a new accelerator toolbox (AT)-based program for automatic optimizing the first turn commissioning. The algorithm and simulation results will be presented in this paper. | ||
![]() |
Poster TUPAB008 [0.646 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB008 | |
About • | paper received ※ 14 May 2021 paper accepted ※ 11 June 2021 issue date ※ 28 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPAB258 | Status of Time-Domain Simulation for the Fast Orbit Feedback System at the HEPS | 4311 |
|
||
High Energy Photon Source (HEPS) is a complex designed at ultra-low emittance. A fast orbit feedback system is proposed to meet the requirement of beam orbit stability at the sub-micron level. In this paper, we present our work on setting up an orbit feedback process combined with noise model, system modeling, and particle tracking in the time domain. RF phase parameter is adjusted together with fast correctors to mitigate the orbit fluctuation due to energy vibration. The preliminary results are shown here. By the following optimization, we hope to provide an effective tool to specify and configure the FOFB system with the simulation. | ||
![]() |
Poster THPAB258 [1.334 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB258 | |
About • | paper received ※ 19 May 2021 paper accepted ※ 27 July 2021 issue date ※ 31 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |