Author: Duan, H.X.
Paper Title Page
MOPAB254 Measurement of Horizontal Beam Size Using Sextupole Magnets 802
 
  • J.A. Crittenden, K.E. Deitrick, H.X. Duan, G.H. Hoffstaetter, V. Khachatryan, D. Sagan
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: This work is supported by National Science Foundation award number DMR-1829070.
The quadratic dependence of sextupole fields on position results in a beam-size-dependent kick on a beam traversing a sextupole magnet. A change in sextupole strength changes the closed orbit and the tune of the beam in a storage ring. Measuring both therefore allows conclusions about the beam size in the sextupole. Here we derive the pertinent formula and discuss the applicability to storage rings. In particular we investigate the measurement accuracy that can be achieved at the Cornell High Energy Synchrotron Source. The Cornell Electron-positron Storage Ring underwent a major upgrade in 2018 with the goal of reducing the emittance by a factor of four. A variety of beam size measurement methods have been developed to monitor the positron beam size, including visible synchrotron light and interferometry. We investigate the sensitivity of the sextupole method and compare to other measurement techniques. The design horizontal emittance of the 6-GeV positron beam is about 30 nm-rad with typical beam sizes of about 1 mm, setting the scale for the required accuracy in the beam-size measurement.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB254  
About • paper received ※ 19 May 2021       paper accepted ※ 22 June 2021       issue date ※ 01 September 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)