Paper | Title | Page |
---|---|---|
TUPAB001 | DAΦNE Commissioning for SIDDHARTA-2 Experiment | 1322 |
|
||
DAΦNE, the Frascati lepton collider, has completed the preparatory phase in order to deliver luminosity to the SIDDHARTA-2 detector. DAΦNE colliding rings rely on a new interaction region, which implements the well-established Crab-Waist collision scheme, and includes a low-beta section equipped with newly designed permanent magnet quadrupoles, and vacuum components. Diagnostics tools have been improved, especially the ones used to keep under control the beam-beam interaction. The horizontal feedback in the positron ring has been potentiated in order to achieve a higher positron current. Luminosity diagnostics have been also updated so to be compatible with the new detector design. The commissioning was initially focused on recovering the optimal dynamical vacuum conditions, outlining alignment errors, and optimizing ring optics. For this reason, a detuned optics, featured by relaxed low-b condition at the interaction point and Crab-Waist Sestupoles off, has been applied. In a second stage a low-b optics has been implemented to test collisions with a preliminary setup of the experiment detector. Machine preparation and the first luminosity results are presented and discussed. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB001 | |
About • | paper received ※ 19 May 2021 paper accepted ※ 09 June 2021 issue date ※ 10 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPAB301 | Design of an X-Band LLRF System for TEX Test Facility at LNF-INFN | 3371 |
|
||
Funding: Latino is a project co-funded by Regione Lazio within POR-FESR 2014-2020 program In the framework of LATINO project (Laboratory in Advanced Technologies for INnOvation) funded by Lazio regional government, a TEst stand for X-band (TEX) is being commissioned at Frascati National Laboratories (LNF) of INFN. TEX is born as a collaboration with CERN, aimed at carrying out high power tests of X-band accelerating structure prototypes and waveguide components, and it is of paramount importance in view of the construction of EuPRAXIA@SPARC_LAB facility at LNF. In order to generate, manipulate and measure the RF pulses needed to feed the RF power unit (solid state ScandiNova K400 modulator, CPI 50 MW 50 Hz klystron) an X-band low level RF system has been developed, making use of a commercial S-band (2.856 GHz) Libera digital LLRF (manufactured by Instrumentation Technologies) with a newly designed up/down conversion stage and a reference generation/distribution system, which is able to produce coherent reference frequencies for the American S-band (2.856 GHz) and European X-band (11.994 GHz). In this paper the main features of such systems will be reviewed together with preliminary laboratory measurement results. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB301 | |
About • | paper received ※ 19 May 2021 paper accepted ※ 12 July 2021 issue date ※ 27 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPAB314 | TEX - an X-Band Test Facility at INFN-LNF | 3406 |
|
||
Funding: The LATINO project is co-funded by the Regione Lazio within POR-FESR 2014-2020 European activities (public call "Open Research Infrastructures"). We report the status of the development of an High Power RF Laboratory in X-Band called TEX (TEst-stand for X-Band). TEX is part of the LATINO (Laboratory in Advanced Technologies for INnOvation) initiative that is ongoing at the Frascati National Laboratories (LNF) of the Italian Institute for Nuclear Physics (INFN) that covers many different areas focused on particle accelerator technologies. TEX is a RF test facility based on solid-state K400 modulator from ScandiNova with a 50MW class X-band (11.996 GHz) klystron tube model vkx 8311a operating at 50 Hz. This RF source will operate as resource for test and research programs such as the RF breakdown on RF waveguide components as well as high power testing of accelerating structures for future high gradient linear accelerator such as EuPRAXIA and CLIC. The high power testing will be performed in a dedicated brand-new bunker that has been recently built. RF system, vacuum controls and safety equipments are currently being installed. The first accelerating structure testing is scheduled by beginning 2022. In this document design and tests for all the sub-systems of the facility will be presented and discussed. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB314 | |
About • | paper received ※ 19 May 2021 paper accepted ※ 28 July 2021 issue date ※ 19 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPAB113 | The Extended Operative Range of the LNF LINAC and BTF Facilities | 3987 |
|
||
Funding: These activities has been partially supported by AIDA-2020 Grant Agreement 654168 and ERAD projects. In 2020 the INFN-LNF LINAC and BTF have performed long-term runs for test beams and fixed-target experiments. The scientific needs of these items have been leading our groups to continuous improvements of the LINAC operative range both in pulse time at maximum energy and on the minimum transported energy, until the reset to DAΦNE injections at the beginning of 2021. We will also show the BTF recent developments in the transported beams and the second line installation. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB113 | |
About • | paper received ※ 19 May 2021 paper accepted ※ 27 July 2021 issue date ※ 27 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |