Author: Dhar, A.
Paper Title Page
WEPAB110 Solid-State Driven X-Band Linac for Electron Microscopy 2853
 
  • A. Dhar, E.A. Nanni, M.A.K. Othman, S.G. Tantawi
    SLAC, Menlo Park, California, USA
 
  Funding: This work was supported by the Department of Energy Contract No. DE-AC02-76SF00515.
Microcrystal electron diffraction (MicroED) is a technique used by scientists to image molecular crystals with cryo-electron microscopy (cryo-EM)*. However, cryo-EMs remain expensive, limiting MicroED’s accessibility. Current cryo-EMs accelerate electrons to 200-300 keV using DC electron guns with a nA of current and low emittance. However at higher voltages these DC guns rapidly grow in size. Replacing these electron guns with a compact linac powered by solid-state sources could lower cost while maintaining beam quality, thereby increasing accessibility. Utilizing compact high shunt impedance X-band structures ensures that each RF cycle contains at most a few electrons, preserving beam coherence. CW operation of the RF linac is possible with distributed solid-state architectures** that use 100W solid-state amplifiers at X-band frequencies. We present an initial design for a prototype low-cost CW RF linac for high-throughput MicroED producing 200 keV electrons with a standing-wave architecture where each cell is individually powered by a solid-state amplifier. This design also provides an upgrade path for future compact MeV-scale sources on the order of 1 meter in size.
* Jones, C. G. et al. ACS central science 4, 1587-1592 (2018).
** D. C. Nguyen et al, Proc. 9th International Particle Accelerator Conference (IPAC’18), no. 9, pp. 520-523
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB110  
About • paper received ※ 19 May 2021       paper accepted ※ 24 June 2021       issue date ※ 10 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)