Author: D’Elia, A.
Paper Title Page
MOPAB108 ESRF-EBS 352.37 MHz Radio Frequency System 395
 
  • J. Jacob, P.B. Borowiec, A. D’Elia, G. Gautier, V. Serrière
    ESRF, Grenoble, France
 
  The ESRF 352 MHz Radio Frequency (RF) system has been upgraded and tailored to the new 4th Generation Extremely Brilliant Source EBS, that was installed in 2019 and commissioned in 2020. The five former five-cell cavities were replaced with 13 single cell strongly HOM damped cavities that were developed in house, 10 of which are powered from existing 1 MW klystron transmitters. The remaining three cavities are individually fed by three 150 kW solid state amplifiers. All this required a reconstruction in record time of an elaborate WR2300 waveguide network. The low level RF system as well as the cavity and transmitter control system have been rebuilt. The RF design, commissioning and operation experience will be reported, including plans for a 4th harmonic RF system for bunch lengthening to further improve the performance of the new EBS ring.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB108  
About • paper received ※ 19 May 2021       paper accepted ※ 27 May 2021       issue date ※ 02 September 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB332 Design of 4th Harmonic RF Cavities for ESRF-EBS 1031
 
  • A. D’Elia, J. Jacob, V. Serrière, X.W. Zhu
    ESRF, Grenoble, France
 
  Funding: European Union’s Horizon 2020 research and innovation program under grant #871072
An active 4th harmonic RF system for bunch lengthening is under study at the ESRF to improve the performance of the new EBS storage ring, mainly for few bunch operation with high currents per bunch, by reducing Touschek and intrabeam scattering, thereby increasing the lifetime and limiting the emittance growth. It will also reduce impedance heating of the vacuum chambers. The 4th Harmonic 1.41 GHz normal conducting cavity design takes inspiration from the KEK idea of using a TM020 mode exhibiting a reduced R/Q but a higher unloaded Q with respect to TM010. We propose to use multicell cavities for their compactness, the reduced number of required ancillaries and the ease of control for a reduced number of cavities. The drawback is the complexity of the model and the necessity to damp the lower order TM010 mode (LOM) as well as the higher order modes (HOM). The RF design of a 4th harmonic multicell damped cavity will be presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB332  
About • paper received ※ 19 May 2021       paper accepted ※ 17 August 2021       issue date ※ 16 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB333 ESRF-EBS 352 MHz HOM Damped RF Cavities 1034
 
  • A. D’Elia, J. Jacob, V. Serrière
    ESRF, Grenoble, France
 
  For the new ESRF-EBS Storage Ring (SR), HOM damped RF cavities were needed to cope with the reduced thresholds for Longitudinal Coupled Bunch Instabilities (LCBI). The 352 MHz cavities were designed at the ESRF based on an improved version of the 500 MHz EU/ALBA/BESSY structures. A short description of the cavity design will be presented as well as an overview of the fabrication, the preparation and the performance of 13 such cavities for the ESRF-EBS SR. A study of the impedance of a whole cavity equipped with its ancillaries (HOM absorbers, ion pump and tuner) will be presented. One of the three HOM absorbers, the smaller one on top of the cavity, was finally not installed on the machine. The reasons and a detailed analysis in terms of HOM impedances that justifies this choice will be reported.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB333  
About • paper received ※ 19 May 2021       paper accepted ※ 07 June 2021       issue date ※ 02 September 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)