Author: Davut, C.
Paper Title Page
MOPAB171 Numerical Simulation on Plasma-Based Beam Dumps Using Smilei 582
 
  • S. Kumar, C. Davut, G.X. Xia
    UMAN, Manchester, United Kingdom
  • A. Bonatto, C. Davut, L. Liang
    The University of Manchester, Manchester, United Kingdom
  • A. Bonatto
    Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
  • B.S. Nunes
    IF-UFRGS, Porto Alegre, Brazil
  • R.P. Nunes
    UFRGS, Porto Alegre, Brazil
 
  The active plasma beam dump utilizes a laser to generate a plasma wakefield and decelerate an externally injected beam to low energy. We use the particle-in-cell code "Smi-lei" for the investigation of electron beam energy loss in plasma. In this research work, we optimize the laser and plasma parameters to investigate the active plasma beam dump scheme. In doing so, most of the beam energy will be deposited in the plasma. The optimization strategy for the beam energy loss in plasma is presented.
*A. Bonatto, C. B. Schroeder et al., Physics of Plasmas 22 (8) 083106 (2015).
*G. Xia, A. Bonatto et al., Instruments 4 (2) 10 (2020).
*A Bonatto et al., J. Phys.: Conf. Ser. 1596 012058, 2020.
 
poster icon Poster MOPAB171 [0.756 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB171  
About • paper received ※ 15 May 2021       paper accepted ※ 24 May 2021       issue date ※ 26 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB284 Analytical and Numerical Characterization of Cherenkov Diffraction Radiation as a Longitudinal Electron Bunch Profile Monitor for AWAKE Run 2 4355
 
  • C. Davut, G.X. Xia
    UMAN, Manchester, United Kingdom
  • O. Apsimon
    The University of Liverpool, Liverpool, United Kingdom
  • O. Apsimon
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • P. Karataev
    Royal Holloway, University of London, Surrey, United Kingdom
  • P. Karataev
    JAI, Egham, Surrey, United Kingdom
  • T. Lefèvre, S. Mazzoni
    CERN, Geneva, Switzerland
 
  In this paper, CST simulations of the coherent Cherenkov Diffraction Radiation with a range of parameters for different dielectric target materials and geometries are discussed and compared with the theoretical investigation of the Polarization Current Approach to design a prototype of a radiator for the bunch length/profile monitor for AWAKE Run 2. It was found that the result of PCA theory and CST simulation are consistent with each other regarding the shape of the emitted ChDR cone.
* Karlovets, D. V. (2011). JETP, 113(1), 27-45.
** Shevelev, M. V., & Konkov, A. S. (2014). JETP, 118(4), 501-511.
*** Curcio, A., et al.(2020). PRAB, 23(2), 022802.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB284  
About • paper received ※ 16 May 2021       paper accepted ※ 14 July 2021       issue date ※ 10 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRXC02
Non Invasive Bunch Length Measurements Exploiting Cherenkov Diffraction Radiation  
 
  • S. Mazzoni, M. Bergamaschi, R. Corsini, A. Curcio, W. Farabolini, D. Gamba, L. Garolfi, A. Gilardi, R. Kieffer, M. Krupa, T. Lefèvre, E. Senes, M. Wendt
    CERN, Geneva, Switzerland
  • A. Curcio
    NSRC SOLARIS, Kraków, Poland
  • C. Davut, G.X. Xia
    UMAN, Manchester, United Kingdom
  • W. Farabolini
    CEA-DRF-IRFU, France
  • K.V. Fedorov, P. Karataev, K. Lekomtsev, C. Pakuza
    JAI, Oxford, United Kingdom
  • K.V. Fedorov, A. Potylitsyn
    TPU, Tomsk, Russia
  • J. Gardelle
    CEA, LE BARP cedex, France
  • P. Karataev
    Royal Holloway, University of London, Surrey, United Kingdom
  • T.H. Pacey, Y.M. Saveliev
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • A. Schloegelhofer
    TU Vienna, Wien, Austria
  • E. Senes
    Oxford University, Physics Department, Oxford, Oxon, United Kingdom
 
  Cherenkov Diffraction Radiation (ChDR) refers to the emission of broadband electromagnetic radiation which occurs when a charged particle propagates at relativistic speed in the vicinity of a dielectric material. At variance with the better-known Cherenkov radiation, ChDR is a non-invasive technique, that is the particle beam does not impinge on the dielectric radiator. ChDR also possesses other interesting features like a relatively high light yield, a broadband spectrum of emission and the emission at a relatively large angle with respect to the beam trajectory. Due to its potential, CERN initiated over the last few years several studies on ChDR-based diagnostics techniques. In this contribution I will focus on the exploitation of ChDR for non-invasive bunch length measurement, from proof of principle tests performed at the CLEAR facility at CERN and CLARA at Daresbury laboratory to current developments for experiments and facilities such as AWAKE and FCC  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)