Author: Danielson, L.R.
Paper Title Page
MOPAB372 KARVE: A Nanoparticle Accelerator for Space Thruster Applications 1151
 
  • J.W. Lewellen, L.R. Danielson, A. Essunfeld, J.A. Hollingsworth, M.A. Holloway
    LANL, Los Alamos, New Mexico, USA
  • E.K. Lewis
    NASA Johnson Space Center, Houston, Texas, USA
 
  We present a concept for using RF-based acceleration of nanoparticles (NPs) as a means of generating thrust for future space missions: the Kinetic Acceleration & Resource Vector Engine (KARVE) thruster. Acceleration of nanoparticles (NPs) via DC accelerators has been shown to be feasible in dust accelerator labs such as the Heidelberg dust accelerator and the 3 MV hypervelocity dust accelerator at the Colorado Center for Lunar Dust and Atmospheric Studies. In contrast, KARVE uses RF-driven acceleration of nanoparticles as the basis of a thruster design lying between chemical and ion engines in performance: more efficient than chemical engines in terms of specific impulse; and higher thrust than ion engines. The properties of multi-gap RF accelerators also allow an on-the-fly tradeoff between specific impulse and thrust.  
poster icon Poster MOPAB372 [0.694 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB372  
About • paper received ※ 19 May 2021       paper accepted ※ 27 May 2021       issue date ※ 10 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)