Author: Chen, S.
Paper Title Page
TUPAB080 Design and Status of the Beam Switchyard of the Shanghai Soft X-Ray FEL User Facility 1559
 
  • S. Chen, R. Wang
    SSRF, Shanghai, People’s Republic of China
  • H.X. Deng, C. Feng, X. Fu, B. Liu
    SARI-CAS, Pudong, Shanghai, People’s Republic of China
 
  SXFEL-UF, a soft X-ray FEL user facility located in Shanghai, has been upgraded from the existing test facility. Electron energy increases from 840 MeV to 1.5 GeV and a SASE FEL line will be added besides the existing seeding FEL line. It has started commissioning since early this year. In order for simultaneous operation of the two FEL lines, a beam switchyard is built between the linac and the two FEL lines. In this paper, the physics design of the beam switchyard is described.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB080  
About • paper received ※ 19 May 2021       paper accepted ※ 11 June 2021       issue date ※ 20 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB081 Design of the Beam Distribution System of SHINE 1562
 
  • S. Chen, M. Gu, R. Wang
    SSRF, Shanghai, People’s Republic of China
  • H.X. Deng, X. Fu
    SARI-CAS, Pudong, Shanghai, People’s Republic of China
 
  In shanghai, a hard X-ray free electron laser project named SHINE is under design. It will be based on a superconducting linac running in CW mode. On the first stage, there will be three parallel undulator lines downstream the linac. For simultaneous operation of the three undulator lines, a beam distribution system based on fast kickers will be installed between linac and undulator lines. The physics design of this beam distribution system is described in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB081  
About • paper received ※ 19 May 2021       paper accepted ※ 14 June 2021       issue date ※ 22 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB089 Proof-of-Principle Experiment Design for PEHG-FEL in SXFEL User Facility 1589
 
  • Z. Qi, H.X. Deng, C. Feng, B. Liu
    SARI-CAS, Pudong, Shanghai, People’s Republic of China
  • S. Chen, Z.T. Zhao
    SSRF, Shanghai, People’s Republic of China
 
  In this paper, we demonstrate a proof-of-principle experimental design for phase-merging enhanced harmonic generation (PEHG) free electron laser (FEL) in Shanghai Soft X-ray Free Electron Laser (SXFEL) user facility. The simulation results indicate that, taking advantage of the beam switchyard, the normal modulator and the seeded FEL line in SXFEL user facility, together with an oblique incident seed laser, we can perform the phase-merging effect in PEHG and finally get an 8.86nm FEL radiation through the undulator, which is the 30th harmonic of the seed laser.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB089  
About • paper received ※ 19 May 2021       paper accepted ※ 17 June 2021       issue date ※ 02 September 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)