Author: Bruendermann, E.    [Bründermann, E.]
Paper Title Page
MOPAB035 Modified Lattice of the Compact Storage Ring in the cSTART Project at Karlsruhe Institute of Technology 159
 
  • A.I. Papash, E. Bründermann, B. Härer, A.-S. Müller, R. Ruprecht, J. Schäfer, M. Schuh
    KIT, Karlsruhe, Germany
 
  A very large ac­cep­tance com­pact stor­age ring (VLA-cSR) is under de­sign at the In­sti­tute for Beam Physics and Tech­nol­ogy (IBPT) of the Karl­sruhe In­sti­tute of Tech­nol­ogy (KIT, Ger­many). The com­bi­na­tion of a com­pact stor­age ring and a laser wake­field ac­cel­er­a­tor (LWFA) might be the basis for fu­ture com­pact light sources and ad­vanc­ing user fa­cil­i­ties. Mean­while, the post-LWFA beam should be adapted for stor­age and ac­cu­mu­la­tion in a ded­i­cated stor­age ring. Mod­i­fied geom­e­try and lat­tice of a VLA-cSR op­er­at­ing at 50 MeV en­ergy range have been stud­ied in de­tailed sim­u­la­tions. The main fea­tures of a new model are de­scribed here. The new de­sign, based on 45° bend­ing mag­nets, is suit­able to store the post-LWFA beam with a wide mo­men­tum spread (1% to 2%) as well as ul­tra-short elec­tron bunches in the fs range from the Fer­n­in­frarot Linac- Und Test- Ex­per­i­ment (FLUTE). The DBA-FDF lat­tice with re­laxed set­tings, split el­e­ments, and higher-or­der op­tics of tol­er­a­ble strength al­lows im­prov­ing the dy­namic aper­ture to an ac­cept­able level. This con­tri­bu­tion dis­cusses the lat­tice fea­tures in de­tail and dif­fer­ent pos­si­ble op­er­a­tion schemes of a VLA-cSR.  
poster icon Poster MOPAB035 [1.405 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB035  
About • paper received ※ 10 May 2021       paper accepted ※ 27 May 2021       issue date ※ 24 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB294 Implementing Electro-Optical Diagnostics for Measuring the CSR Far-Field at KARA 931
 
  • C. Widmann, E. Bründermann, M. Caselle, S. Funkner, A.-S. Müller, M.J. Nasse, G. Niehues, M.M. Patil, C. Sax, J.L. Steinmann, M. Weber
    KIT, Karlsruhe, Germany
  • C. Mai
    DELTA, Dortmund, Germany
 
  Funding: This work was supported by BMBF ErUM-Pro project 05K19 STARTRAC, C.W. was funded under contract No. 05K19VDK, C.M. under contract No. 05K19PEC, S.F. under contract No. 05K16VKA.
For mea­sur­ing the tem­po­ral pro­file of the co­her­ent syn­chro­tron ra­di­a­tion (CSR) at the KIT stor­age ring KARA (Karl­sruhe Re­search Ac­cel­er­a­tor) an ex­per­i­men­tal setup based on elec­tro-op­ti­cal spec­tral de­cod­ing (EOSD) is cur­rently being im­ple­mented. The EOSD tech­nique al­lows sin­gle-shot, phase-sen­si­tive mea­sure­ments of the far-field ra­di­a­tion on a turn-by-turn basis at rates in the MHz range. There­fore, the re­sult­ing THz ra­di­a­tion from the dy­nam­ics of the bunch evo­lu­tion, e.g. the mi­crobunch­ing, can be ob­served with high tem­po­ral res­o­lu­tion. This far-field setup is part of the dis­trib­uted sen­sor net­work at KARA. Ad­di­tion­ally to the in­for­ma­tion ac­quired from the near-field EOSD spec­tral de­cod­ing and the hor­i­zon­tal bunch pro­file mon­i­tor, it en­ables to mon­i­tor the lon­gi­tu­di­nal phase-space of the bunch. In this con­tri­bu­tion, the char­ac­ter­i­za­tion of the far-field setup is sum­ma­rized and its im­ple­men­ta­tion is dis­cussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB294  
About • paper received ※ 19 May 2021       paper accepted ※ 07 June 2021       issue date ※ 18 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB240 Increasing the Single-Bunch Instability Threshold by Bunch Splitting Due to RF Phase Modulation 3193
 
  • J.L. Steinmann, E. Blomley, M. Brosi, E. Bründermann, A. Mochihashi, A.-S. Müller, M. Schuh, P. Schönfeldt
    KIT, Karlsruhe, Germany
 
  Funding: This work is funded by the BMBF contract number: 05K16VKA.
RF phase mod­u­la­tion at twice the syn­chro­tron fre­quency can be used to split a stored elec­tron bunch into two or more bunch­lets or­bit­ing each other. We re­port on time-re­solved mea­sure­ments at the Karl­sruhe Re­search Ac­cel­er­a­tor (KARA), where this bunch split­ting was used to in­crease the thresh­old cur­rent of the mi­crobunch­ing in­sta­bil­ity, hap­pen­ing in the short-bunch op­er­a­tion mode. Turn­ing the mod­u­la­tion on and off re­pro­ducibly af­fects the saw­tooth be­hav­ior of the emit­ted co­her­ent syn­chro­tron ra­di­a­tion.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB240  
About • paper received ※ 19 May 2021       paper accepted ※ 08 July 2021       issue date ※ 18 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB331 Application of KALYPSO as a Diagnostic Tool for Beam and Spectral Analysis 3451
 
  • M.M. Patil, E. Bründermann, M. Caselle, A. Ebersoldt, S. Funkner, B. Kehrer, A.-S. Müller, M.J. Nasse, G. Niehues, J.L. Steinmann, M. Weber, C. Widmann
    KIT, Karlsruhe, Germany
 
  Funding: This work is supported by the BMBF project 05K19VKD STARTRAC and DFG-funded Doctoral School ’Karlsruhe School of Elementary and Astroparticle Physics: Science and Technology’
KA­LYPSO is a novel de­tec­tor ca­pa­ble of op­er­at­ing at frame rates up to 12 MHz de­vel­oped and tested at the in­sti­tute of data pro­cess­ing and elec­tron­ics (IPE) and em­ployed at Karl­sruhe Re­search Ac­cel­er­a­tor (KARA) which is part of the Test Fa­cil­ity and Syn­chro­tron Ra­di­a­tion Source KIT. This de­tec­tor con­sists of sil­i­con, In­GaAs, PbS, or PbSe line array sen­sor with spec­tral sen­si­tiv­ity from 350 nm to 5000 nm. The un­prece­dented frame rate of this de­tec­tor is achieved by a cus­tom-de­signed ASIC read­out chip. The FPGA-read­out ar­chi­tec­ture en­ables con­tin­u­ous data ac­qui­si­tion and real-time data pro­cess­ing. Such a de­tec­tor has var­i­ous ap­pli­ca­tions in the fields of beam di­ag­nos­tics and spec­tral analy­sis. KA­LYPSO is cur­rently em­ployed at var­i­ous syn­chro­tron fa­cil­i­ties for elec­tro-op­ti­cal spec­tral de­cod­ing (EOSD) to study the lon­gi­tu­di­nal pro­file of the elec­tron beam, to study the en­ergy spread of the elec­tron beam, tun­ing of free-elec­tron lasers (FELs), and also in char­ac­ter­iz­ing laser spec­tra. This con­tri­bu­tion will pre­sent an overview of the re­sults from the men­tioned ap­pli­ca­tions.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB331  
About • paper received ※ 19 May 2021       paper accepted ※ 22 July 2021       issue date ※ 13 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB251 Efficient Terahertz Generation by Tilted-Pulse-Front Pumping in Lithium Niobate for the Split-Ring Resonator Experiment at FLUTE 4299
 
  • M. Nabinger, E. Bründermann, S. Funkner, B. Härer, A.-S. Müller, M.J. Nasse, G. Niehues, R. Ruprecht, J. Schäfer, T. Schmelzer, N.J. Smale
    KIT, Karlsruhe, Germany
  • M.M. Dehler, R. Ischebeck, M. Moser, V. Schlott
    PSI, Villigen PSI, Switzerland
  • T. Feurer, M. Hayati, Z. Ollmann
    Universität Bern, Institute of Applied Physics, Bern, Switzerland
 
  Funding: This work is co-funded via the European Union’s H2020 research and innovation program, GA No 730871, ARIES.
A com­pact, lon­gi­tu­di­nal di­ag­nos­tics for fs-scale elec­tron bunches using a THz elec­tric-field tran­sient in a split-ring res­onator (SRR) for streak­ing will be tested at the Fer­n­in­frarot Linac- Und Test- Ex­per­i­ment (FLUTE). For this new streak­ing tech­nique, in­ten­sive THz pulses are re­quired, which will be gen­er­ated by laser-based op­ti­cal rec­ti­fi­ca­tion. We pre­sent a setup for gen­er­at­ing THz pulses using tilted-pulse-front pump­ing in lithium nio­bate at room tem­per­a­ture. Ex­cited by an 800 nm Ti:Sa pump laser with 35 fs band­width-lim­ited pulse length, con­ver­sion ef­fi­cien­cies up to 0.027% were achieved. Fur­ther­more, the sta­tus of the SRR ex­per­i­ment is shown.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB251  
About • paper received ※ 19 May 2021       paper accepted ※ 14 July 2021       issue date ※ 19 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRXC03 Modern Ultra-Fast Detectors for Online Beam Diagnostics 4540
 
  • M.M. Patil, E. Bründermann, M. Caselle, A. Ebersoldt, S. Funkner, B. Kehrer, A.-S. Müller, M.J. Nasse, G. Niehues, J.L. Steinmann, W. Wang, M. Weber, C. Widmann
    KIT, Karlsruhe, Germany
 
  Funding: This work is supported by the BMBF project 05K19VKD STARTRAC and DFG-funded Doctoral School ’Karlsruhe School of Elementary and Astroparticle Physics: Science and Technology’
Syn­chro­tron light sources op­er­ate with bunch rep­e­ti­tion rates in the MHz regime. The lon­gi­tu­di­nal and trans­verse beam dy­nam­ics of these elec­tron bunches can be in­ves­ti­gated and char­ac­ter­ized by ex­per­i­ments em­ploy­ing lin­ear array de­tec­tors. To im­prove the per­for­mance of mod­ern beam di­ag­nos­tics and over­come the lim­i­ta­tions of com­mer­cially avail­able de­tec­tors, we have at KIT de­vel­oped KA­LYPSO, a de­tec­tor sys­tem op­er­at­ing with an un­prece­dented frame rate of up to 12 MHz. To fa­cil­i­tate the in­te­gra­tion in dif­fer­ent ex­per­i­ments, a mod­u­lar ar­chi­tec­ture has been uti­lized. Dif­fer­ent semi­con­duc­tor mi­crostrip sen­sors based on Si, In­GaAs, PbS, and PbSe can be con­nected to the cus­tom-de­signed low noise front-end ASIC to op­ti­mize the quan­tum ef­fi­ciency at dif­fer­ent pho­ton en­er­gies, rang­ing from near-UV, vis­i­ble, and up to near-IR. The front-end elec­tron­ics are in­te­grated within a het­ero­ge­neous DAQ con­sist­ing of FPGAs and GPUs, which al­lows the im­ple­men­ta­tion of real-time data pro­cess­ing. This de­tec­tor is cur­rently in­stalled at KARA, Eu­ro­pean XFEL, FLASH, Soleil, DELTA. In this con­tri­bu­tion, we pre­sent the de­tec­tor ar­chi­tec­ture, the per­for­mance re­sults, and the on­go­ing tech­ni­cal de­vel­op­ments.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-FRXC03  
About • paper received ※ 19 May 2021       paper accepted ※ 22 July 2021       issue date ※ 01 September 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)