Author: Brill, A.R.
Paper Title Page
MOPAB044 Gas Bremsstrahlung Measurements in the Advanced Photon Source Storage Ring 193
 
  • J.C. Dooling, A.R. Brill, J.R. Calvey
    ANL, Lemont, Illinois, USA
 
  Funding: Work supported by the U.S. D.O.E.,Office of Science, Office of Basic Energy Sciences, under contract number DE-AC02- 06CH11357.
In the Advanced Photon Source Upgrade storage ring (SR), small-aperture vacuum chambers provide limited conductance for pumping. Non-evaporable getter (NEG) coatings will be used in the SR to support the vacuum. Ion pumps and cold-cathode gauges are typically located away from the vacuum chamber transporting the beam. Measuring gas bremsstrahlung (GB) photons in low-conductance chambers provides a method to determine the pressure at the beam location. We report on GB measurements made in the ID-25 beamline. A Pb:Glass calorimeter radiator generates Cherenkov radiation when high-energy photons cause pair-production within the glass. A photomultiplier tube converts the light pulses to electrical signals. Data was obtained during normal machine operations starting in January 2020. Data collection was facilitated using a 4-channel ITech Beam Loss Monitor FPGA that allows for control of thresholds and attenuation settings in both counting and pulse-height acquisition modes. Count rates and spectra were recorded for the three primary fill patterns typically used during SR operations as well as during gas injection experiments; results of these measurements will be presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB044  
About • paper received ※ 22 May 2021       paper accepted ※ 28 May 2021       issue date ※ 25 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB046 Plan for Operating the APS-Upgrade Booster with a Frequency Sweep 201
 
  • J.R. Calvey, T.G. Berenc, A.R. Brill, L. Emery, T. Fors, K.C. Harkay, T.J. Madden, N. Sereno, U. Wienands
    ANL, Lemont, Illinois, USA
  • A. Gu
    UCB, Berkeley, California, USA
 
  The APS-Upgrade presents several challenging demands to the booster synchrotron. Swap-out injection requires the booster to capture a high charge bunch (up to 17 nC), accelerate it to 6 GeV, and maintain a low emittance at extraction for injection into the storage ring. To accommodate these conflicting demands, the RF frequency will be ramped between injection and extraction. However, the RF cavity tuners will remain static, which means the couplers will need to withstand a high reflected power at extraction. This paper presents a plan for a system that will meet the requirements for injection efficiency, extracted emittance, and equivalent power at the coupler. Results from tracking simulations and beam studies with a frequency ramp will also be shown.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB046  
About • paper received ※ 28 May 2021       paper accepted ※ 02 June 2021       issue date ※ 26 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB265 New RF BPM Electronics for the 560 Beam Position Monitors of the APS-U Storage Ring 4325
 
  • P. Leban, L. Bogataj, M. Cargnelutti, U. Dragonja, P. Paglovec
    I-Tech, Solkan, Slovenia
  • A.R. Brill, J. Carwardine, W.X. Cheng, N. Sereno
    ANL, Lemont, Illinois, USA
 
  Within the upgrade of the APS storage ring to a multi-bend achromat lattice, 560 RF Beam Position Monitors will be required. The projected beam sizes are below 10 microns in both horizontal and vertical planes, putting stringent requirements on the BPM electronics resolution, long-term stability, beam current dependency, and instrument reproducibility. For the APS-U project, the Libera Brilliance+ instrument has been upgraded in technology and capabilities, including the independent multi-bunch turn-by-turn processing and an improved algorithm to further reduce the crossbar-switch artifacts. More than 140 instruments, equipped with 4 BPM electronics each, are being delivered to Argonne National Laboratory, consisting of the largest scale production for Instrumentation Technologies. In this contribution, the extensive test conditions to which the instruments were exposed and their results will be presented, as well as the beam-based long-term drift measurements with different fill patterns.  
poster icon Poster THPAB265 [9.272 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB265  
About • paper received ※ 16 May 2021       paper accepted ※ 22 June 2021       issue date ※ 21 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)