Paper | Title | Page |
---|---|---|
MOPAB342 | Design, Fabrication, and Commissioning of the Mode Launchers for High Gradient C-Band Cavity Testing at LANL | 1060 |
|
||
Funding: Los Alamos National Laboratory LDRD Program. This poster will report on the design, fabrication, and operation status of the new high gradient C-band TM01 mode launchers for the high gradient C-band test stand at LANL. Modern applications require accelerators with optimized cost of construction and operation, naturally calling for high-gradient acceleration. At LANL we commissioned a test stand powered by a 50 MW, 5.712 GHz Canon klystron. The test is capable of conditioning single cell accelerating cavities for operation at surface electric fields up to 300 MV/m. The rf field is coupled into the cavity from a WR187 waveguide through a mode launcher that converts the fundamental mode of the rectangular waveguide into the TM01 mode of the circular waveguide. Several designs for mode launchers were considered and the final design was chosen based on a compromise between the field enhancements, bandwidth, and simplicity and cost of fabrication. Four mode launchers were fabricated and cold-tested. Two mode launchers with the best transmission characteristics were installed and conditioned to high power. The presentation will report achieved gradients, breakdown probabilities, and other characteristics measured during operation. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB342 | |
About • | paper received ※ 19 May 2021 paper accepted ※ 25 May 2021 issue date ※ 19 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPAB329 | LCLS-II Average Current Monitor | 3443 |
|
||
The LCLS-II project at SLAC is a high power upgrade to the existing free-electron laser facility. The LCLS-II Accelerator System will include a new 4 GeV continuous-wave superconducting linear accelerator in the first kilometer of the SLAC linear accelerator tunnel and supplements the existing low power pulsed linac. Average Current Monitors (ACMs) are needed to protect against excessive beam power which might otherwise cause damage to the beam dumps. The ACM cavities are pillbox-shaped stainless steel RF cavity with two radial probe ports with couplers, one radial test port with a coupler, and a mechanism for mechanically fine-tuning the cavity resonant frequency. The ACM RF cavities will be located at points of known or constrained beam energy and will monitor the beam current, a safety system will trip off the beam if the beam power exceeds the allowed value. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB329 | |
About • | paper received ※ 19 May 2021 paper accepted ※ 16 June 2021 issue date ※ 22 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |