Author: Bondar, D.S.
Paper Title Page
MOPAB165 Identical Focusing of Train of Relativistic Positron Gaussian Bunches in Plasma 565
 
  • D.S. Bondar
    KhNU, Kharkov, Ukraine
  • V.I. Maslov, I.N. Onishchenko
    NSC/KIPT, Kharkov, Ukraine
 
  Funding: The study is supported by the National Research Fundation of Ukraine under the program "Leading and Young Scientists Research Support" (project # 2020.02/0299).
Focusing of both electron and positron bunches in an electron-positron collider is necessary. The focusing mechanism in the plasma, in which all electron bunches are focused identically, has been proposed earlier*. This mechanism is considered for positron bunches by using simulation with LCODE**. Three types of lenses with different trains of cosine profile positron bunches are considered depending on the bunch length, the distance between bunches, and their charge. It has been shown that all positron bunches are focused identically at special parameters of the first positron bunch, wherein the middle of bunches are focused weaker than their fronts.
* V. I. Maslov et al. PAST. 3(2012) 159.
** K. V. Lotov, Phys. Plas. 5 (1998) 785.
 
poster icon Poster MOPAB165 [2.272 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB165  
About • paper received ※ 17 May 2021       paper accepted ※ 20 May 2021       issue date ※ 17 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB166 Wakefield Excitation by a Sequence of Laser Pulses in Plasma 568
 
  • D.S. Bondar
    KhNU, Kharkov, Ukraine
  • V.I. Maslov, I.N. Onishchenko
    NSC/KIPT, Kharkov, Ukraine
 
  Funding: The study is supported by the National Research Fundation of Ukraine under the program "Leading and Young Scientists Research Support" (project # 2020.02/0299).
PIC simulation by means of 2.5D UMKA code * of the wakefield excitation by a sequence of three Gaussian laser pulses in plasma was carried out. The dependence of excited wakefield intensity on power and width of laser pulses was investigated. It was shown the coherent addition of wakefield, excited by each laser pulse of the sequence, for linear case, while for the nonlinear case the coherency was destroyed. The profiled sequence of laser pulses was also considered. The possibility to obtain the same total wakefield excited by the profiled sequence of laser pulses with decreasing intensity, as for the uniform sequence was studied.
* G. I. Dudnikova et al. Comp. Techn. 10 (2005) 37.
 
poster icon Poster MOPAB166 [2.638 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB166  
About • paper received ※ 17 May 2021       paper accepted ※ 20 May 2021       issue date ※ 15 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB167 Wakefield Excitation in Plasma of Metallic Density by a Laser Pulse 571
 
  • D.S. Bondar
    KhNU, Kharkov, Ukraine
  • V.I. Maslov, I.N. Onishchenko
    NSC/KIPT, Kharkov, Ukraine
 
  Funding: The study is supported by the National Research Foundation of Ukraine under the program "Leading and Young Scientists Research Support" (project # 2020.02/0299).
Recently the proposal to use X-ray Exawatt pulse for particle acceleration in a crystal has been declared *. Short X-ray high-power pulse excites wakefield in electron plasma of metallic density which can be used for high gradient acceleration of charged particles. This wakefield is suited for laser wakefield acceleration. In this paper there are simulated with PIC code UMKA: excitation of the large wakefield amplitude up to several TV/m in electron plasma of metallic density by a powerful X-ray laser pulse; laser-plasma wakefield acceleration of self-injected electron bunch in such setup; combined acceleration by plasma wakefield driven by a laser pulse (LPWA) and by self-injected electron bunch (PWFA).
* T.Tajima. Eur. Phys. J. Special Topics 223 (2014) 1037.
 
poster icon Poster MOPAB167 [2.054 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB167  
About • paper received ※ 17 May 2021       paper accepted ※ 21 May 2021       issue date ※ 22 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)