Author: Baturin, S.
Paper Title Page
MOPAB287 The Development of Single Pulse High Dynamic Range BPM Signal Detector Design at AWA 909
 
  • E.M. Siebert, S. Baturin
    Northern Illinois University, DeKalb, Illinois, USA
  • D.S. Doran, G. Ha, W. Liu, P. Piot, J.G. Power, J.H. Shao, C. Whiteford, E.E. Wisniewski
    ANL, Lemont, Illinois, USA
 
  Funding: the US Department of Energy, Office of Science
Single pulse high dynamic range BPM signal detector has been on the most wanted list of Argonne Wakefield Accelerator (AWA) Test Facility for many years. Unique capabilities of AWA beamline require BPM instrumentation with an unprecedented dynamic range, thus cost effective solution could be challenging to design and prototype. Our most recent design, and the results of our quest for a solution, are shared in this paper.
 
poster icon Poster MOPAB287 [1.372 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB287  
About • paper received ※ 19 May 2021       paper accepted ※ 23 June 2021       issue date ※ 13 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUXB06
High Transformer Ratio Plasma Wakefield Acceleration and Current Profile Reconstruction Using Emittance Exchange  
 
  • R.J. Roussel
    Enrico Fermi Institute, University of Chicago, Chicago, Illinois, USA
  • G. Andonian, A. Deng, C.E. Hansel, G.E. Lawler, W.J. Lynn, R. Robles, J.B. Rosenzweig, K. Sanwalka
    UCLA, Los Angeles, USA
  • S. Baturin
    Northern Illinois University, DeKalb, Illinois, USA
  • M.E. Conde, D.S. Doran, G. Ha, J.G. Power, J. Seok, C. Whiteford, E.E. Wisniewski
    ANL, Lemont, Illinois, USA
 
  Funding: This work is supported by the Department of Energy, Office of High Energy Physics, under Contract No. DESC0017648.
To overcome limits on total acceleration achievable in plasma wakefield accelerators, specially shaped drive beams can be used to increase the transformer ratio, implying that the drive beam deceleration is minimized in comparison with acceleration obtained in the wake. We report the results of a nonlinear PWFA, high transformer ratio experiment using high-charge, longitudinally asymmetric drive beams in a plasma cell. An emittance exchange process is used to generate variable drive current profiles, in conjunction with a long (multiple plasma wavelength) witness beam. The witness beam is energy-modulated by the wakefield, yielding a response that contains detailed spectral information in a single-shot measurement. Using these methods, we generate a variety of beam profiles and characterize the wakefields, directly observing beam-loaded transformer ratios up to 7.8. Further, a spectrally-based current reconstruction technique, validated by 3D particle-in-cell simulations, is introduced to obtain the drive beam profile from the decelerating wakefield data.
 
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB071 Physics Goals of DWA Experiments at FACET-II 3922
 
  • J.B. Rosenzweig, H.S. Ancelin, G. Andonian, A. Fukasawa, C.E. Hansel, G.E. Lawler, W.J. Lynn, N. Majernik, J.I. Mann, P. Manwani, Y. Sakai, O. Williams, M. Yadav
    UCLA, Los Angeles, California, USA
  • S.V. Baryshev
    Michigan State University, East Lansing, Michigan, USA
  • S. Baturin
    Northern Illinois University, DeKalb, Illinois, USA
  • M.J. Hogan, B.D. O’Shea, D.W. Storey, V. Yakimenko
    SLAC, Menlo Park, California, USA
 
  Funding: This work supported by DOE HEP Grant DE-SC0009914,
The dielectric wakefield acceleration (DWA) program at FACET produced a multitude of new physics results that range from GeV/m acceleration to the discovery of high field-induced conductivity in THz waves, and beyond, to a demonstration of positron-driven wakes. Here we review the rich program now developing in the DWA experiments at FACET-II. With increases in beam quality, a key feature of this program is extended interaction lengths, near 0.5 m, permitting GeV-class acceleration. Detailed physics studies in this context include beam breakup and its control through the exploitation of DWA structure symmetry. The next step in understanding DWA limits requires the exploration of new materials with low loss tangent, large bandgap, and improved thermal characteristics. Advanced structures with photonic features for mode confinement and exclusion of the field from the dielectric, as well as quasi-optical handling of coherent Cerenkov signals is discussed. Use of DWA for laser-based injection and advanced temporal diagnostics is examined.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB071  
About • paper received ※ 25 May 2021       paper accepted ※ 28 July 2021       issue date ※ 22 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)