Author: Agapov, A.
Paper Title Page
MOPAB300 Description of the Beam Diagnostics Systems for the SOCIT, SODIT and SODIB Applied Research Stations Based on the NICA Accelerator Complex 946
 
  • A. Slivin, A. Agapov, A.A. Baldin, A.V. Butenko, G.A. Filatov, K.N. Shipulin, E. Syresin, G.N. Timoshenko, A. Tuzikov
    JINR, Dubna, Moscow Region, Russia
  • D.V. Bobrovskiy, A.I. Chumakov, S. Soloviev
    MEPhI, Moscow, Russia
  • I.L. Glebov, V.A. Luzanov
    GIRO-PROM, Dubna, Moscow Region, Russia
  • A.S. Kubankin
    BelSU, Belgorod, Russia
  • T. Kulevoy, Y.E. Titarenko
    ITEP, Moscow, Russia
 
  Within the framework of the NICA project an Innovation Block is being constructed. It includes an applied research station for microchips with a package for Single Event Effects (SEE) testing (energy range of 150-500 MeV/n, the SODIT station), an applied research station for testing of decapsulated microchips (ion energy up to 3,2 MeV/n, the SOCIT station), and an applied research station for space radiobiological research and modelling of influence of heavy charged particles on cognitive functions of the brain of small laboratory animals and primates (energy range 500-1000 MeV/n, the SODIB station). The systems for diagnostics and control of the beam characteristics during the certification and adjustment as well as the systems for online diagnostics and control of the beam characteristics of the SOCIT, SODIT and SODIB applied research stations are described.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB300  
About • paper received ※ 19 May 2021       paper accepted ※ 27 May 2021       issue date ※ 23 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB415 Irradiation Methods and Infrastructure Concepts of New Beam Lines for NICA Applied Research 2498
 
  • G.A. Filatov, A. Agapov, A.V. Butenko, K.N. Shipulin, A. Slivin, E. Syresin, A. Tuzikov, A.S. Vorozhtsov
    JINR, Dubna, Moscow Region, Russia
  • S. Antoine, W. Beeckman, X.G. Duveau, J. Guerra-Phillips, P.J. Jehanno
    SIGMAPHI S.A., Vannes, France
 
  Nowadays space exploration has faced the issue of radiation risk to microelectronics and biological objects. The new beamlines and irradiation stations of the Nuclotron-based Ion Collider fAcility (NICA) at JINR are currently under construction to study this issue. The beamline parameters, different methods for homogeneous irradiation of targets such as scanning, and beam profile shaping by octupole magnets are discussed. A short description of the building infrastructure, magnet elements, and detectors for these beamlines is also given.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB415  
About • paper received ※ 11 May 2021       paper accepted ※ 02 June 2021       issue date ※ 13 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)