Author: Ackermann, S.
Paper Title Page
FRXA06 Mitigation of Beam Instabilities in the Echo-Enabled Harmonic Generation Beamline for FLASH2020+ 4514
 
  • F. Pannek, W. Hillert, D. Samoilenko
    University of Hamburg, Institut für Experimentalphysik, Hamburg, Germany
  • S. Ackermann, E. Allaria, P. Niknejadi, G. Paraskaki, L. Schaper
    DESY, Hamburg, Germany
  • M.A. Pop
    MAX IV Laboratory, Lund University, Lund, Sweden
 
  With the FLASH2020+ upgrade, one of the beamlines of the free-electron laser FLASH at DESY will be based on the Echo-Enabled Harmonic Generation (EEHG) seeding scheme and provide high-repetition-rate, coherent radiation down to 4 nm. To reach this wavelength, it is necessary to imprint intricate structures on the longitudinal phase space of the electron bunch at a very high harmonic of the seed laser wavelength, making the scheme potentially vulnerable to beam instabilities. Part of the beamline is a strong chicane, which is necessary to create the dispersion required by EEHG. Resulting effects such as Coherent Synchrotron Radiation (CSR) can be very detrimental for the bunching process and have to be taken into account already in the design of the beamline to ensure optimum FEL performance. We investigate and propose possible mitigation solutions to such instabilities in the FLASH2020+ parameter range.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-FRXA06  
About • paper received ※ 19 May 2021       paper accepted ※ 20 July 2021       issue date ※ 20 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)