The Joint Accelerator Conferences Website (JACoW) is an international collaboration that publishes the proceedings of accelerator conferences held around the world.
TY - CONF AU - Lushtak, Y. AU - Li, Y. AU - Lyndaker, A. ED - Liu, Lin ED - Byrd, John M. ED - Neuenschwander, Regis T. ED - Picoreti, Renan ED - Schaa, Volker R. W. TI - Finite Element Analyses of Synchrotron Radiation Induced Stress in Beryllium Synch-Light Mirrors J2 - Proc. of IPAC2021, Campinas, SP, Brazil, 24-28 May 2021 CY - Campinas, SP, Brazil T2 - International Particle Accelerator Conference T3 - 12 LA - english AB - Mirrors made of high purity beryllium are used in particle accelerators to extract synchrotron radiation (SR) in the visible range for transverse and longitudinal particle beam profile measurements. Be is a high-strength, high thermal conductivity material. As a low-Z metal, it allows high-energy photons to penetrate the mirror body, so that majority of the SR power is dissipated, resulting in a significantly reduced thermal stress and distortion on the mirror surface. In this paper, we describe a Finite Element Analysis method of accurately simulating the SR-induced thermal stress on the beryllium mirrors at the Cornell Electron Storage Ring at various particle beam conditions. The simulations consider the energy dependence of X-ray attenuation in beryllium. The depth-dependent distribution of the power absorbed by the mirror is represented by separate heating zones within the mirror model. The results help set the operational safety limit for the mirrors-ensuring that the SR-induced thermal stress is below the elastic deformation limit and estimate the mirror surface distortion at high beam currents. The simulated surface distortion is consistent with optical measurements. PB - JACoW Publishing CP - Geneva, Switzerland SP - 3664 EP - 3666 KW - dipole KW - simulation KW - synchrotron KW - scattering KW - operation DA - 2021/08 PY - 2021 SN - 2673-5490 SN - 978-3-95450-214-1 DO - doi:10.18429/JACoW-IPAC2021-WEPAB410 UR - https://jacow.org/ipac2021/papers/wepab410.pdf ER -