JACoW logo

Joint Accelerator Conferences Website

The Joint Accelerator Conferences Website (JACoW) is an international collaboration that publishes the proceedings of accelerator conferences held around the world.


RIS citation export for WEPAB318: Prediction and Clustering of Longitudinal Phase Space Images and Machine Parameters Using Neural Networks and K-Means Algorithm

TY  - CONF
AU  - Maheshwari, M.
AU  - Dunning, D.J.
AU  - Jones, J.K.
AU  - King, M.P.
AU  - Kockelbergh, H.R.
AU  - Pollard, A.E.
ED  - Liu, Lin
ED  - Byrd, John M.
ED  - Neuenschwander, Regis T.
ED  - Picoreti, Renan
ED  - Schaa, Volker R. W.
TI  - Prediction and Clustering of Longitudinal Phase Space Images and Machine Parameters Using Neural Networks and K-Means Algorithm
J2  - Proc. of IPAC2021, Campinas, SP, Brazil, 24-28 May 2021
CY  - Campinas, SP, Brazil
T2  - International Particle Accelerator Conference
T3  - 12
LA  - english
AB  - Machine learning algorithms were used for image and parameter recognition and generation with the aim to optimise the CLARA facility at Daresbury, using start-to-end simulation data. Convolutional and fully connected neural networks were trained using TensorFlow-Keras for different instances, with examples including predicting Longitudinal Phase Space (LPS) images with machine parameters as input and FEL parameter prediction (e.g. pulse energy) from LPS images. The K-means clustering algorithm was used to cluster the LPS images to highlight patterns within the data. Machine learning techniques can enhance the way large amounts of data are processed and analysed and so have great potential for application in accelerator science R&D.
PB  - JACoW Publishing
CP  - Geneva, Switzerland
SP  - 3417
EP  - 3420
KW  - FEL
KW  - network
KW  - simulation
KW  - electron
KW  - ECR
DA  - 2021/08
PY  - 2021
SN  - 2673-5490
SN  - 978-3-95450-214-1
DO  - doi:10.18429/JACoW-IPAC2021-WEPAB318
UR  - https://jacow.org/ipac2021/papers/wepab318.pdf
ER  -