JACoW logo

Joint Accelerator Conferences Website

The Joint Accelerator Conferences Website (JACoW) is an international collaboration that publishes the proceedings of accelerator conferences held around the world.


RIS citation export for WEPAB306: Applying Machine Learning to Optimization of Cooling Rate at Low Energy RHIC Electron Cooler

TY  - CONF
AU  - Gao, Y.
AU  - Brown, K.A.
AU  - Dyer, P.S.
AU  - Seletskiy, S.
AU  - Zhao, H.
ED  - Liu, Lin
ED  - Byrd, John M.
ED  - Neuenschwander, Regis T.
ED  - Picoreti, Renan
ED  - Schaa, Volker R. W.
TI  - Applying Machine Learning to Optimization of Cooling Rate at Low Energy RHIC Electron Cooler
J2  - Proc. of IPAC2021, Campinas, SP, Brazil, 24-28 May 2021
CY  - Campinas, SP, Brazil
T2  - International Particle Accelerator Conference
T3  - 12
LA  - english
AB  - The Low Energy RHIC electron Cooler (LEReC) is a novel, state-of-the-art, electron accelerator for cooling RHIC ion beams, which was recently built and commissioned. Optimization of cooling with LEReC requires fine-tuning of numerous LEReC parameters. In this work, initial optimization results of using Machine Learning (ML) methods - Bayesian Optimization (BO) and Q-learning are presented. Specially, we focus on exploring the influence of the electron trajectory on the cooling rate. In the first part, simulations are conducted by utilizing a LEReC simulator. The results show that both methods have the capability of deriving electron positions that can optimize the cooling rate. Moreover, BO takes fewer samples to converge than the Q-learning method. In the second part, Bayesian optimization is further trained on the historical cooling data. In the new samples generated by the BO, the percentage of larger cooling rates data is greatly enhanced compared with the original historical data.
PB  - JACoW Publishing
CP  - Geneva, Switzerland
SP  - 3391
EP  - 3394
KW  - electron
KW  - simulation
KW  - network
KW  - experiment
KW  - emittance
DA  - 2021/08
PY  - 2021
SN  - 2673-5490
SN  - 978-3-95450-214-1
DO  - doi:10.18429/JACoW-IPAC2021-WEPAB306
UR  - https://jacow.org/ipac2021/papers/wepab306.pdf
ER  -