The Joint Accelerator Conferences Website (JACoW) is an international collaboration that publishes the proceedings of accelerator conferences held around the world.
TY - CONF AU - Dalena, B. AU - Ben Ghali, M. ED - Liu, Lin ED - Byrd, John M. ED - Neuenschwander, Regis T. ED - Picoreti, Renan ED - Schaa, Volker R. W. TI - A Machine Learning Technique for Dynamic Aperture Computation J2 - Proc. of IPAC2021, Campinas, SP, Brazil, 24-28 May 2021 CY - Campinas, SP, Brazil T2 - International Particle Accelerator Conference T3 - 12 LA - english AB - Currently, dynamic aperture calculations of high-energy hadron colliders are performed through computer simulations, which are both a resource-heavy and time-costly processes. The aim of this study is to use a reservoir computing machine learning model in order to achieve a faster extrapolation of dynamic aperture values. A recurrent echo-state network (ESN) architecture is used as a basis for this work. Recurrent networks are better fitted to extrapolation tasks while the reservoir echo-state structure is computationally effective. Model training and validation is conducted on a set of "seeds" corresponding to the simulation results of different machine configurations. Adjustments in the model architecture, manual metric and data selection, hyper-parameters tuning and the introduction of new parameters enabled the model to reliably achieve good performance on examining testing sets. PB - JACoW Publishing CP - Geneva, Switzerland SP - 4172 EP - 4175 KW - network KW - dynamic-aperture KW - simulation KW - hadron KW - distributed DA - 2021/08 PY - 2021 SN - 2673-5490 SN - 978-3-95450-214-1 DO - doi:10.18429/JACoW-IPAC2021-THPAB201 UR - https://jacow.org/ipac2021/papers/thpab201.pdf ER -