Title |
Front-to-End Simulations of the Energy Recovery Linac for the LHeC Project |
Authors |
- K.D.J. André, B.J. Holzer
CERN, Geneva, Switzerland
|
Abstract |
The LHeC project aims to study the electron-proton deep inelastic scattering at the TeV energy scale with an innovative accelerator program. It exploits the promising energy recovery technology in order to collide an intense 50 GeV lepton beam with one hadron beam from the High Luminosity Large Hadron Collider (HL-LHC) in parallel to the hadron-hadron operation. The paper presents the studies that have been performed to assess the performance of the machine and the efficiency of the energy recovery process for different scalings of the ERL. The studies include emittance blow-up due to synchrotron radiation emission and beam-disruption created by the strong beam-beam force at the interaction point. The design principles of the ERL structure are discussed, including the particle detector bypass and the interaction region, and the results of the tracking simulations are presented, considering the complete multi-turn ERL process. Special attention is turned to the lepton beam emittance budget and the resulting energy recovery performance.
|
Paper |
download WEPAB064.PDF [0.708 MB / 4 pages] |
Export |
download ※ BibTeX
※ LaTeX
※ Text/Word
※ RIS
※ EndNote |
Conference |
IPAC2021 |
Series |
International Particle Accelerator Conference (12th) |
Location |
Campinas, SP, Brazil |
Date |
24-28 May 2021 |
Publisher |
JACoW Publishing, Geneva, Switzerland |
Editorial Board |
Liu Lin (LNLS, Campinas, Brazil); John M. Byrd (ANL, Lemont, IL, USA); Regis Neuenschwander (LNLS, Campinas, Brazil); Renan Picoreti (LNLS, Campinas, Brazil); Volker R. W. Schaa (GSI, Darmstadt, Germany) |
Online ISBN |
978-3-95450-214-1 |
Online ISSN |
2673-5490 |
Received |
18 May 2021 |
Accepted |
24 June 2021 |
Issue Date |
28 August 2021 |
DOI |
doi:10.18429/JACoW-IPAC2021-WEPAB064 |
Pages |
2740-2743 |
Copyright |
Published by JACoW Publishing under the terms of the Creative Commons Attribution 3.0 International license. Any further distribution of this work must maintain attribution to the author(s), the published article's title, publisher, and DOI. |
|