Title |
Robust Optical Instrumentation for Accelerator Alignment Using Frequency Scanning Interferometry |
Authors |
- M. Sosin, H. Mainaud Durand, F. Micolon, V. Rude, J.M. Rutkowski
CERN, Meyrin, Switzerland
|
Abstract |
The precise alignment of components inside particle accelerators is an important engineering challenge in high-energy physics. Optical interferometry, being a precise, optical distance measurement technique, is often a method of choice in such applications. However, classical fringe-counting interferometers present several drawbacks in terms of system complexity. Due to the increasing availability of broadband, high-speed, sweeping laser sources, Frequency Scanning Interferometry (FSI) based systems, using Fourier analysis of the interference signal, are becoming a subject of growing interest. In the framework of the High-Luminosity LHC project at CERN, a range of FSI-based sensor solutions have been developed and tested. It includes the optical equipment for monitoring the position of cryogenic components inside their cryostats and FSI instrumentation like inclinometers and water-based levelling sensors. This paper presents the results of preliminary tests of these components.
|
Paper |
download TUPAB307.PDF [1.006 MB / 4 pages] |
Export |
download ※ BibTeX
※ LaTeX
※ Text/Word
※ RIS
※ EndNote |
Conference |
IPAC2021 |
Series |
International Particle Accelerator Conference (12th) |
Location |
Campinas, SP, Brazil |
Date |
24-28 May 2021 |
Publisher |
JACoW Publishing, Geneva, Switzerland |
Editorial Board |
Liu Lin (LNLS, Campinas, Brazil); John M. Byrd (ANL, Lemont, IL, USA); Regis Neuenschwander (LNLS, Campinas, Brazil); Renan Picoreti (LNLS, Campinas, Brazil); Volker R. W. Schaa (GSI, Darmstadt, Germany) |
Online ISBN |
978-3-95450-214-1 |
Online ISSN |
2673-5490 |
Received |
17 May 2021 |
Accepted |
07 June 2021 |
Issue Date |
12 August 2021 |
DOI |
doi:10.18429/JACoW-IPAC2021-TUPAB307 |
Pages |
2203-2206 |
Copyright |
Published by JACoW Publishing under the terms of the Creative Commons Attribution 3.0 International license. Any further distribution of this work must maintain attribution to the author(s), the published article's title, publisher, and DOI. |
|