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Abstract
Recently, various efforts have presented Machine Learn-

ing (ML) as a powerful tool for solving accelerator problems.
In the LHC a decision tree-based algorithm has been applied
to detect erroneous beam position monitors demonstrating
successful results in operation. Supervised regression mod-
els trained on simulations of LHC optics with quadrupole
errors promise to significantly speed-up optics corrections
by finding local errors in the interaction regions. The imple-
mentation details, results and future plans for these studies
will be discussed following a brief introduction to ML con-
cepts and its suitability to different problems in the domain
of accelerator physics.

INTRODUCTION
Accelerator physics problems build a wide range of com-

plex numerical and analytical tasks, e.g. modeling of dif-
ferent aspects of beam behavior, machine performance opti-
mization, measurements data acquisition, and analysis. The
growing complexity of modern and future accelerators pro-
vides the motivation to explore alternative techniques, which
can complement traditional methods or even surpass their
performance and offer opportunities to build more efficient
and powerful tools. Machine Learning (ML) techniques
have been introduced into numerous scientific and industrial
areas demonstrating human-surpassing performance in pat-
tern recognition, forecasting, and optimization tasks. These
ML concepts can find analogies in the domain of accelerator
physics as it will be shown in the following.

Considering the particular case of optics measurements
and corrections, traditional techniques meet their limitation,
e.g. dealing with erroneous signal artefacts that cannot be
related to known patterns in the measurements data. Unsu-
pervised ML techniques cover these limitations by learning
the thresholds for anomalies detection directly from the given
data as it will be shown on the example of identification of
beam position monitors (BPM) faults. Another example is
the optics perturbations caused by magnetic gradient field
errors, which have to be corrected in order to control the
beam optics. Supervised ML models built on simulations
of the optics perturbed with thousands of realisations of
quadrupolar magnet errors can predict the actual magnetic
errors present in the machine, providing additional infor-
mation for the computation of correction settings. Due to
hardware and electronics issues, the signal measured at the
BPMs suffers from noise that produces uncertainties in the
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optics functions reconstructed from the harmonic analysis
of BPM turn-by-turn readings. For this problem a special
kind of Neural Networks named Autoencoder has been ap-
plied as a denoising technique improving the precision of
phase measurements, thus potentially leading to more pre-
cise computed corrections based on the measured optics.
The following section presents a short overview on latest
achievements of applying ML to different types of particle
accelerators.

MACHINE LEARNING CONCEPTS IN
ACCELERATOR PHYSICS

The concept of ML is known since the middle of the last
century. The definition of ML is referred to computer pro-
grams and algorithms that automatically improve with expe-
rience by learning from examples with respect to some class
of task and performance measures without being explicitly
programmed [1]. Based on this definition we can determine
a domain of accelerator tasks that can be potentially solved
using ML techniques. Such tasks can be concerned by build-
ing models where analytical solutions do not exist, but the
models can be “learned” from given examples instead of
building them from sets of explicit rules. When building
ML solutions, we should define a performance measure, e.g.
accelerator performance parameter such as beam size or
pulse energy. It is also important to differentiate a specific
“class of task”, such that ML tools are designed for particu-
lar accelerator components which can be easily tested and
controlled. Currently existing ML-based methods for accel-
erators can be divided into virtual diagnostics, control and
optimization, anomaly detection and predictive modeling. A
more detailed overview for beam diagnostics can be found
in [2,3], recent advances for the field of ML for accelerators
control are described in [4–7].

Most of the ML efforts in accelerator physics are being
developed for automatic machine optimization, since ML
methods demonstrate notable advantages compared to nu-
merical techniques in solving control tasks for non-linear,
time-varying systems with large parameter spaces. Two
techniques have found an especially wide application in
this domain - Bayesian optimization [8] and Reinforcement
Learning [9, 10]. Control tasks can be approached in both
model-based and model-independent ways, e.g. using adap-
tive learning techniques to implement feedback algorithms
for optimizing and tuning complex noisy systems [11–13].
Predictive modeling techniques also include Gaussian Pro-
cesses, which can be used to build models relating a set of
parameters (e.g. quadrupole settings) to an optimization
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Figure 1: Comparison between β-beating measured from
SVD-cleaned data and additional cleaning with IF. The data
is obtained during ion commissioning in 2018.

function (e.g. pulse energy) offering the advantage to be
able not only to give predictions, but also estimate uncer-
tainty bounds [14]. ML concepts provide techniques to build
virtual diagnostics tools that can assist in case a direct mea-
surement would have negative impact on operation or in the
locations where no physical instrumentation can be placed.
The diagnostics of various beam properties using surrogate
models has been applied at various facilities [15–19].

ML-based tools are being developed to tune and control
machine and beam behaviour [20–23]. Recently, a fully-
automated collimators alignment based on beam loss spikes
classification using supervised learning has become a stan-
dard tool in the LHC operation. This approach significantly
reduced time and human effort needed for the the setup of the
collimators system [24]. Further ML-techniques for beam
dynamics studies at the LHC are presented in [25] demon-
strating applications for optimisation of beam lifetime and
losses, detection of collective beam instabilities and beam
heating effects, as well as outlier detection in dynamic aper-
ture simulations. Anomaly detection techniques are suitable
for the detection of unusual events that do not conform to
expected patterns. It can be performed using classification
on labeled data (supervised learning), unsupervised learning
techniques including clustering or semi-supervised learn-
ing methods such as autoencoder. One of the examples of
anomaly detection at the LHC, the detection of faulty BPMs
is presented in detail in the next section.

UNSUPERVISED DETECTION OF
FAULTY BEAM POSITION MONITORS
In presence of faulty BPM signal, the optics functions

computed from harmonic analysis of BPM readings [26,27]
are contaminated by outliers, which have to be manually
removed followed by repeated optics analysis. Most of the
noise and faulty signals can be removed using predefined
thresholds, as well as through applying advanced signal-
improvement techniques based on SVD [28]. However few
nonphysical values are usually observed in the optics com-
puted from the data cleaned with these techniques. In order
to reduce the manual effort and save operational time, an
anomaly detection technique called Isolation Forest (IF) [29]
has been incorporated into optics measurements software

infrastructure. IF is a decision-tree-based algorithm, which
requires only the expected contamination rate (fraction of
outliers in the data) as input parameter. This method re-
cently became a standard part of optics measurements at
LHC and has been successfully used during beam commis-
sioning and machine developments under different optics
configurations in 2018. Operational results, statistics on
simulations, and comparison to clustering techniques can be
found in [3, 30]. Application of IF algorithm significantly
improved the reliability of the obtained optics functions and
reduced the human efforts in cleaning of measurement data.
We were able to identify faulty BPMs independently of the
settings of previously-available cleaning tools. Determining
the optimal values of the SVD settings has been shown to be
crucial for the performance of the SVD-based cleaning tech-
nique [31]. However, when applying the SVD-based method
with optimal settings obtained from extensive simulations
studies, we could not match the results achieved using IF
algorithm.

Reconstructing the optics from the harmonic-analysis data
excluding the bad BPMs identified by IF prevents the appear-
ance of outliers in the computed optical functions. Figure 1
shows an example of improving the optics computation us-
ing IF-cleaned data. It has been shown that IF is capable
to identify the BPMs failing in most of the measurements,
whose fault reasons could not be observed previously in the
properties of the signal. Generally, we demonstrated the abil-
ity of IF technique to complement efficiently the traditional
cleaning tools by removing the remaining faulty BPMs.

SUPERVISED REGRESSION MODELS
FOR OPTICS CORRECTIONS

Currently, LHC optics corrections are performed in two
steps, i.e. local corrections based on Segment-by-Segment
technique [32] and global corrections using Response Matrix
approach. Local corrections are applied around Interaction
Points (IPs) where the quadrupoles are individually powered,
while global corrections are performed by trimming also the
circuits - quadrupoles powered in series [33,34]. These meth-
ods allow achieving unprecedentedly low β-beating [26],
however the currently applied methods do not offer the pos-
sibility to estimate the entire set of actual individual magnet
errors around the ring. Supervised regression models trained
on a large number of LHC simulations demonstrate the po-
tential to predict the individual quadrupole errors from the
measured optics perturbations caused by these errors.

Building a Supervised Model
The general idea of applying supervised learning to op-

tics corrections is to build regression models that use the
difference between measured and design optics as input fea-
tures and produce the magnet errors as output. The first
preliminary approach is presented in [35] and is based on
the optics perturbations introduced by quadrupoles powered
in series excluding the errors in the triplet magnets around
the IPs. Here we present a more realistic approach, where
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the simulated optics perturbations are introduced by single
quadrupole errors around the entire ring including the IP
triplets. In order to build the training set, we randomly as-
sign errors to all quadrupoles available in the LHC according
to the expected error distribution [36] and apply these errors
using the settings for 2018 optics with β∗ = 40 cm. We use
simulated phase advance, β∗, and normalized dispersion de-
viations from the ideal optics as model input (3346 features
in total). The output variables are the quadrupole errors
used to introduce the simulated deviations from the design
optics (1256 target variables). Gaussian noise generated as
a random distribution with the factor 10−3 × 2π and scaled
by

√
β, β-function value at the BPM location, are added to

the simulated phase advance measurements used as input
features. The normalized dispersion is given Gaussian noise
of 4 × 10−3 √m estimated from the measurements in 2018.
As it was shown in [37], applying complex models such as
Orthogonal matching pursuit or convolutional neural net-
work does not result in significantly better corrections, so
we use a least-squares linear regression with weights regular-
ization [38, 39] as baseline model for the following studies.

Table 1: The effect of noise on the predictive power of a
regression model. Regression models are trained on 60 000
samples, using only the noisy phase advances as input fea-
tures, simulated for 2016 optics with β∗ = 40 cm. Mean
absolute error (MAE) of prediction is given in the units
of absolute quadrupole errors [10−5m−2]. R2 defines the
coefficient of determination.

Noise [2π] Total MAE Triplets MAE R2

5 × 10−4 1.71 1.44 0.67
1 × 10−3 2.19 1.48 0.43
2 × 10−3 2.5 1.52 0.25
4 × 10−3 2.69 1.57 0.13
6 × 10−3 2.75 1.59 0.09
8 × 10−3 2.79 1.61 0.07
1 × 10−2 2.82 1.61 0.05

Evaluating Regression Models
To be noted that, due to degeneracy, there are infinite pos-

sible error distributions that reproduce the same behaviour
and hence, a solution to determine a unique set of quadrupole
errors from the optics perturbations does not exist. However,
we can validate the regression models from the ML point of
view since the simulated errors used as true output values in
training data are available. The typical figures of merit for
regression tasks are the mean absolute error (MAE) to com-
pare the difference between true target values and the output
of the model and the coefficient of explained variance (R2

score). In order to conclude on the learning performance,
the dataset is separated into training (80%) and test (20%)
sets. A big increase in the number of training samples does
not necessarily result in a large increase of predictive power
of the model. Considering the amount of time and storage
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Figure 2: Model cross validation based on the loss (MAE)
and R2 coefficient depending on the number of available
samples. The loss is constantly decreasing with the grow-
ing number of samples, while R2 is increasing. This trend
indicates a reasonable learning behaviour, however using
datasets larger than ca. 70 000 samples does not improve
the scores significantly.
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Figure 3: Results of triplet error prediction using LR model
trained on 3304 input features, 100 000 samples demonstrat-
ing the relative error prediction in single quadrupoles in the
triplets. The computed slope is the correlation between true
values and residuals, indicating the generalization error of
the model.

needed to handle the training simulation data, especially
for the future online application, we need to determine the
optimal training set size. The change of the model scores
with respect to the number of samples (learning curve) also
indicates the ability of the model to learn from the given
data and indicates the dataset size required to achieve the
optimal model performance as shown in Figure 2. In the
next section we present the results from the regression model
using 75 000 samples in total for training and test.

Results
The final evaluation of the model is performed on 100

independently-generated simulations. We define the cor-
relation between the size of the simulated magnet errors
and the size of residuals (difference between true and pre-
dicted values) as generalization error and compare the rms
values of simulated and predicted error distributions. Fig-
ure 3 demonstrates the results of the errors prediction of the
triplets quadrupoles located close to IPs and producing the
largest optics perturbations.
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The previously described results are obtained from simu-
lations. We also investigate the ability of regression models
to compute magnet errors to correct the β-beating in the
virgin machine, using LHC data from 2016 commissioning,
measured for β∗ = 40 cm before any corrections. Since
normalized dispersion and β∗ are not available in this mea-
surement set, we need to train the model using only the
phase advance deviations from ideal optics as input features.
In this case, the model achieves significantly smaller train-
ing and test scores than regression model trained on larger
amount of features (R2 = 0.45 compared to 0.78), demon-
strating the importance of normalized dispersion and β∗ for
the magnet errors reconstruction. Since the actual magnet
errors generating the measured optics perturbations in the
uncorrected machine are unknown, we cannot evaluate the
model prediction as in the case of simulations. Instead, we
reconstruct the β-beating from the predicted quadrupole er-
rors and compare it to the measurement. The difference is
then the expected remaining optics errors after applying the
predicted strengths as corrections. According to the residual
β-beating obtained by comparing the measured and the re-
constructed optics using the predicted magnetic errors, the
absolute β-beating in Beam 1 can be potentially reduced
from rms values of 12% and 54% to 2% and 7% in hori-
zontal and vertical planes, respectively. For Beam 2, the
rms β-beating decreases from 49% to 9% in the horizontal
and from 12% to 3% in the vertical plane. The obtained
regression-based corrections can be potentially improved
by training a more powerful model including the sextupoles
misalignments and non-linear effects. In case non-linearities
are added, a Neural Network (NN) regression model will be
potentially needed in order to resolve non-linear correlations
using the hidden layers. The application of NN can be also
advantageous for the training procedure. After training a
NN-model for a specific optics setting, we can avoid fully
re-training a new model for a different optics. Instead, only
the last layer will have to be re-trained on additional data for
the new optics. This can reduce the amount of training data
and time needed to create predictive regression models.

We also investigated the effect of the noise on predictive
power of the model. The comparison of prediction errors
between models trained on the input data given different
noise factors is shown in Table 1. Loss values indicate that
the accuracy of the triplet errors prediction is less concerned
by the noise than the rest of the magnets. The study shows
how important is to keep the measurements noise level as
low as possible. Next section focuses specifically on this
problem and its possible ML-based solution.

RECONSTRUCTION AND DENOISING OF
PHASE MEASUREMENTS

As shown in Table 1, reducing the noise in the phase-
advance measurement used as input for quadrupole errors
prediction models can potentially improve the accuracy of
the prediction. Moreover, the presence of the noise enforces
acquisition of several turn-by-turn measurements for each

beam in order to obtain statistically significant error bars
in the optics functions caused by the uncertainties due to
the noise in BPM signal. A possible ML-based solution
to reduce the noise in the phase measurements is the ap-
plication of autoencoder [40]. We trained an autoencoder
network on a set of noisy phase measurements simulated as
described in the previous section as well as the originally
simulated phase measurements. During the training, the
autoencoder aims to minimize the difference between true
output, i.e simulated phase advances without noise, and the
output produced by the network from the noisy input data.
To perform the denoising and produce the original phase
as output, the model needs to extract features that capture
relevant information in the data. Applying an autoecoder
trained on 10 000 simulated phase advance measurement
sets demonstrates the reduction of the simulated phase noise
by a factor of 2.

Another potential application of autoencoder is the recon-
struction of missing BPM signal. We trained an autoencoder
using simulated phase advance measurements set where
10% data points have been replaced by 0 indicating a miss-
ing value, e.g. if a BPM has been identified as faulty and
removed in previous analysis stages. As training output we
provide the original set of phase advances without missing
values, such that autoencoder output can be compared to
this original output. The training target is to minimize the
difference between original phase advances and autoencoder
output. The MAE computed for 100 validation samples
is 0.93 × 10−3[2π]. This method can be applied in order
to reconstruct the missing values to provide the input to
quadrupole errors prediction regression models trained on
simulations.

SUMMARY
Although ML techniques have found their first applica-

tions in accelerator physics just a few years ago, they already
have been proven as powerful tools for various control, opti-
mization and automation tasks. We presented several appli-
cations developed for optics measurements and corrections
at the LHC. Operational results of the application of deci-
sion tree based technique for faulty BPMs detection show
its effectiveness and advantages compared to the cleaning
using the traditional techniques only.

The application of regression models allows to gain knowl-
edge about quadrupole errors in the LHC obtaining the entire
set of errors around the ring in one step as demonstrated
by simulating the LHC optics. It was possible since the the
trained model was able to relate the optics deviations from
ideal model to magnets errors that caused these perturba-
tions. This has been shown on simulations of 2018 optics as
well as on LHC measurements from 2016 commissioning.
The quality of phase measurements which is the fundamental
part of optics and corrections computation can be potentially
improved by applying autoencoder network in order to per-
form denoising of the measured data and reconstruct the
missing BPM signal.
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