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Abstract
The precise control of charged particle beams, such as

an electron beam’s longitudinal phase space as well as the
maximization of the output power of a free electron laser
(FEL), or the minimization of beam loss in accelerators,
are challenging tasks. For example, even when all FEL
parameter set points are held constant both the beam phase
space and the output power have high variance because of
the uncertainty and time-variation of thousands of coupled
parameters and of the electron distribution coming off of
the photo cathode. Similarly, all large accelerators face
challenges due to time variation, leading to beam losses and
changing behavior even when all accelerator parameters are
held fixed. We present recent efforts towards developing
machine learning methods along with automatic, model-
independent feedback for automatic tuning of charge particle
beams in particle accelerators. We present experimental
results from the LANSCE linear accelerator at LANL, the
EuXFEL, AWAKE at CERN, FACET-II and the LCLS.

INTRODUCTION
Particle accelerators are complex systems with many cou-

pled components including hundreds of radio frequency
(RF) accelerating cavities and their RF amplifiers as well
as thousands of magnets for steering and focusing charged
particle beams and their power sources. Accelerator designs
are initially optimized by utilizing analytical beam physics
knowledge and simulation studies. Once accelerators are
built their performance does not exactly match the theory
and models on which their design is based.

The differences between actual and designed systems are
due to factors including idealized analytical studies that make
simplifying assumptions and misalignment of accelerator
components. Beyond not matching their designs, accelerator
components and their beams drift unpredictably with time:
1). RF and magnet system amplifiers, power sources, and
reference signals drift with temperature and suffer random
perturbations from the noise within the electrical grid; 2).
The initial 6D (𝑥, 𝑦, 𝑧, 𝑝𝑥 , 𝑝𝑦 , 𝑝𝑧) phase space distribution
of the beams entering accelerators from ion sources or photo
cathodes drift and change unpredictably with time.

Most existing diagnostics are either destructive in nature
or only provide beam-averaged measurements. Transverse
deflecting cavities (TCAV), which can measure the longi-
tudinal phase space (LPS) of relativistic electron bunches,
destroy those bunches in the measurement process [1]. Beam
position monitors (BPM) are non-invasive but only provide
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Figure 1: The adaptive model is tuned to match SYAG-
based measurements of energy spread spectra (A). Once
the modeled (red) and measured (blue) spectra converge the
LPS of the measured beam is predicted almost exactly (B).

bunch-averaged position measurements and beam loss mon-
itors provide no beam data beyond specifying a rough esti-
mate of beam loss within a large region of an accelerator.

Because accelerators are uncertain and time-varying sys-
tems tuning and optimization require many hours of manual
tuning. Tuning is especially challenging at older facilities
with limited diagnostics such as the LANSCE linear acceler-
ator at LANL [2], at facilities that must generate extremely
short and intense beams such as FACET-II [3], and at facil-
ities which require complex and precisely aligned interac-
tions between multiple beams such as AWAKE [4]. Even
the latest and most advanced facilities, especially when mak-
ing large configuration changes to accommodate various
experiment setups such as what must routinely take place at
advanced FEL facilities such as the LCLS [5], LCLS-II [6],
EuXFEL [7], PALFEL [8], and the SwissFEL [9].

Adaptive feedback and machine learning (ML) ap-
proaches are growing in popularity for particle accelerator
for magnet tuning [10], non-invasive TCAV LPS diagnostics
based on adaptive models at FACET [11], LPS diagnos-
tics based on neural networks (NN) at SLAC [12], FEL
light output power maximization at the LCLS and at the Eu-
XFEL [13], surrogate modeling [14], detecting faulty BPMs
and for optics corrections at the LHC at CERN by utilizing
isolation forest techniques and NNs [15,16], beam tuning at
the SPEAR3 light source via Gaussian processes [17], and
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Figure 2: The 3D CNN’s output is used as the initial condition for ES tuning.

multiobjective optimization for simultaneous orbit control
and emittance minimization at AWAKE [18], .

NON-INVASIVE DIAGNOSTICS
The FACET-II electron bunches are going to be extremely

intense with nC charges and few fs bunch lengths. It is chal-
lenging to measure the detailed current profiles of intense
bunches which damage or destroy intercepting diagnostics
and because their few fs bunch lengths are shorter than the
resolution of existing TCAV measurements which are lim-
ited to ∼3fs for highly relativistic bunches. Non-invasive
LPS diagnostics for intense, short beams would be useful
for most FELs and in particular for particle driven plasma
wakefield accelerators (PWA) such as FACET-II in order
to enable more precise control of bunch profiles. A first of
its kind demonstration of an adaptive non-invasive TCAV
LPS diagnostic was developed and tested at FACET to ac-
curately track and predict time varying LPS measurements
based only on passive energy spread spectrum measure-
ments [11]. Recently, we have begun developing such adap-
tive model tuning-based non-invasive diagnostics for the
FACET-II beam [19]. Preliminary simulation results are
shown in Figure 1 where matching the beam’s energy spread
spectrum resulted in an exact prediction of the LPS. Once
such a diagnostic is up and running, it can enable automated
feedback-based control and tuning of the LPS distribution
of the FACET-II electron bunch, as shown in Figure 2.

ACCELERATOR TUNING AND CONTROL
Pulse Energy Maximization at LCLS and EuXFEL

At the LCLS and the EuXFEL we have applied an adaptive
model-independent feedback control algorithm for automatic
maximization of FEL output power [13]. The main strengths
of this approach are its ability to handle multiple coupled
components simultaneously and tune them based only on
noisy measurements of analytically unknown functions.

Beam Loss Minimization at LANSCE
LANSCE simultaneously accelerates intense space charge

dominated beams of H+ and H− ions and is especially chal-
lenging to tune because of very limited diagnostics (few
BPMs, mostly beam loss monitors). We applied adaptive
feedback to minimize multiple beam loss monitors in various
sections of LANSCE simultaneously by tuning 6 parameters
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Figure 3: Beam losses and RF module settings.

simultaneously; the amplitude and phase set points of the
first three digitally controlled RF modules 𝑀2 − 𝑀4. The
strength of this algorithm was demonstrated when following
a facility wide power glitch the beam came back on with high
losses throughout the machine and the adaptive feedback
was able to minimize them within ∼5 minutes as shown in
Figure 3, a task that could have taken up 1 hour of time if
an operator had to iteratively tune all 6 knobs one at a time.

Multi-objective Optimization at AWAKE
At the AWAKE PWA facility at CERN the electron beam

line provides a tightly focused beam lined up with the 400
GeV proton beam for proton-driven PWA of electrons. Due
to coupling, when an effort was made to minimize emittance
growth by adjusting two solenoid and three quadrupole mag-
nets directly following the injector, unwanted changes were
seen in the beam’s trajectory. Therefore we ran two adap-
tive feedbacks simultaneously, the first slowly adjusted 2
solenoids and 3 quads to minimize emittance growth, while
the second adjusted 10 steering magnets at a 3× higher rate
to maintain a desired trajectory, resulting in simultaneous
emittance minimization and trajectory control via 15 param-
eter multiobjective optimization, as shown in Figure 4.
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Figure 4: Tuning 15 components at AWAKE.
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Figure 5: CNN output used as initial guess for ES tuning.

ADAPTIVE MACHINE LEARNING FOR
TIME VARYING SYSTEMS

Longitudinal Phase Space Control at the LCLS
One limitation of standard ML-based approaches which

use machine or simulation data in order to learn a represen-
tation of an accelerator is the fact that their performance
drifts as accelerator beams and components change with
time. Recently, an adaptive ML approach has been devel-
oped for time varying systems, as shown in Figure 5, and
has been applied at the LCLS to automatically control the
longitudinal phase space of the electron beam [20].

Transfer Learning and Domain Transfer
Additional ways to enable the use of ML for changing

systems are transfer learning and domain transfer. A NN can
be trained on simulation data and then made more accurate
for application to an actual accelerator by utilizing a much
smaller set of machine data. This can also update a model for

a changing accelerator over time. A recent demonstration of
transfer learning and domain transfer trained a convolutional
neural network (CNN) to map electron backscatter diffrac-
tion (EBSD) measurements to crystal orientations [21]. The
CNN was first trained using >200,000 simulations, the last
few layers were then retrained using only 1000 experimental
measurements. However CNN accuracy was still limited due
to noise and significant differences between experimental
and simulated measurements. As an additional step domain
transfer was applied in the form of training a U-net using
1000 experimental measurements, which pre-filtered experi-
mental data and fed it to the CNN. Transfer learning together
with domain transfer created a CNN for mapping EBSD
measurements to crystal orientations >1000× faster than
existing state of the art EBSD reconstruction methods.

CONCLUSIONS
ML and adaptive feedback control methods are being

developed by accelerator facilities around the world and new
adaptive machine learning methods are enabling the control
and optimization of complex time varying systems.
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