Author: Weikum, M.K.
Paper Title Page
TUVIR09
Outcome of the Horizon 2020 Design Study EuPRAXIA for a European Plasma Accelerator Facility  
 
  • A. Specka
    LLR, Palaiseau, France
  • R.W. Aßmann, A.R. Maier, A. Martinez de la Ossa, J. Osterhoff, P.A. Walker, M.K. Weikum
    DESY, Hamburg, Germany
  • A. Chancé, P.A.P. Nghiem
    CEA-IRFU, Gif-sur-Yvette, France
  • A. Cianchi
    INFN-Roma II, Roma, Italy
  • A. Cianchi
    Università di Roma II Tor Vergata, Roma, Italy
  • M.-E. Couprie
    SOLEIL, Gif-sur-Yvette, France
  • B. Cros
    CNRS LPGP Univ Paris Sud, Orsay, France
  • G. Dattoli
    ENEA C.R. Frascati, Frascati (Roma), Italy
  • N. Delerue
    Université Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France
  • U. Dorda
    SCK•CEN, Mol, Belgium
  • M. Ferrario, A. Mostacci, C. Vaccarezza
    INFN/LNF, Frascati, Italy
  • L.A. Gizzi
    INO-CNR, Pisa, Italy
  • B. Hidding, C.P. Welsch, G.X. Xia
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • B. Hidding, D.A. Jaroszynski, Z.M. Sheng
    USTRAT/SUPA, Glasgow, United Kingdom
  • A.R. Maier
    University of Hamburg, Hamburg, Germany
  • V. Malka
    Weizmann Institute of Science, Physics, Rehovot, Israel
  • F. Mathieu
    LULI, Palaiseau, France
  • A. Mostacci
    Sapienza University of Rome, Rome, Italy
  • Z. Najmudin
    Imperial College of Science and Technology, Department of Physics, London, United Kingdom
  • R. Pattathil
    STFC/RAL, Chilton, Didcot, Oxon, United Kingdom
  • L.O. Silva
    Instituto Superior Tecnico, Lisbon, Portugal
  • R. Walczak
    JAI, Oxford, United Kingdom
  • R. Walczak
    Oxford University, Physics Department, Oxford, Oxon, United Kingdom
  • C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
  • G.X. Xia
    The University of Manchester, Manchester, United Kingdom
 
  Funding: This work was supported by the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 653782.
Although plasma accelerators can sustain unmatched accelerating gradients - up to three orders of magnitude beyond what RF-based machines reach - their performance and use in applications is still limited by beam quality, in particular a large inherent energy spread. With the aim to demonstrate user readiness, the EuPRAXIA design study has, since 2015, developed various concepts and techniques to improve electron beam quality, increase machine stability, and study possible applications of plasma accelerators. Consisting of a consortium of 41 laboratories from Europe, Asia and the US, the EuPRAXIA project thus presents the first design of a dedicated multi-GeV electron accelerator research infrastructure based on plasma accelerator technology. This presentation explains some of the technical innovations proposed in the EuPRAXIA design and highlights the general facility concept as well as the possible role of the project within the accelerator landscape.
 
video icon
 
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)