High Transformer Ratio PWFA Driven by Photocathode Laser Shaped Electron Bunches

Plasma acceleration experiments at DESY Zeuthen

Gregor Loisch

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

10th International Particle Accelerator Conference Melbourne, 22.05.2019

Outline

- Introduction to HTR PWFA
- Introduction to PITZ
- Self-Modulation Instability
- HTR PWFA at PITZ
- Advanced photocathode laser bunch shaping
- Outlook

Beam-driven plasma wakefield acceleration (PWFA)

PWFA principles, characteristics, implications

Basic principle

- > Relativistic driver enters plasma
- Pushes plasma electrons away due to space charge
- > $\sigma_z \sim \lambda_p$: plasma electrons oscillate around immobile ions
- Trailing witness accelerated in wakefields

PWFA features

- \rightarrow Very high fields achievable (~50 GV/m demonstrated)
- \rightarrow Wakefields have strong transverse components \rightarrow focusing & defocusing

DESY. | HTR PWFA @ PITZ | Gregor Loisch | 10th IPAC, Melbourne 22.05.2019 |

High Transformer Ratio (HTR) wakefields

Increasing ratio of acceleration to deceleration

- Plasma wakefield ~ transformer → Energy-transfer from driver to witness
- Fundamental theorem of beamloading: R = E_{acc}/E_{dec} <2 (symmetrical driver, linear theory)
- High R enables high energy gain or high efficiency
- Several asymmetrical bunch shapes proposed

HTR in PWFA

- λ_{plasma} ≤ mm → ps-scale bunch shaping
- > Driver length = several periods of wake \rightarrow instability

 \rightarrow operation in (quasi-) nonlinear regime: $n_{bunch} > n_{plasma}$

Shaping of picosecond electron bunches

Available bunch shaping schemes

- Several schemes for shaping high brightness electron bunches demonstrated
 - > Masking in dispersive section
 - Nonlinear chromatic shaping with sextupoles
 - Dual frequency linac bunch shaping
 - Shaping by self-wakefields
 - Transverse-to-longitudinal emittance exchange (EEX)
- Methods exhibit drawbacks
- > Additional beamline elements required
- Some lead to large charge loss
- Some introduce distortions to transverse phase space

- D. C. Nguyen *et al.*, Phys. Rev. A **375**, pp. 597-601 (1996) P. Muggli *et al.*, Phys. Rev. Lett. **101**, 054801 (2008)
- R. J. England *et al.*, Phys. Rev. ST Accel. Beams **8**, 012801 (2008) R. J. England *et al.*, Phys. Rev. Lett. **100**, 214802 (2008)
- P. Piot et al., Phys. Rev. Lett. 108, 034801 (2012)
- G. Andonian et al., Phys. Rev. Lett. 118, 054802 (2017)
- P. Piot *et al.*, Phys. Rev. ST Accel. Beams **14**, 022801 (2011) G. Ha *et al.*, Phys. Rev. Lett. **118**, 104801 (2018)
 - M. Boscolo *et al.*, NIM A **577**, pp. 409-416 (2007) G. Penco *et al.*, Phys. Rev. Lett. **112**, 044801 (2014) F. Lemery *et al.*, Phys. Rev. ST Accel. Beams **18**, 081301 (2015)

→ Photocathode laser based bunch shaping employed at PITZ

Status of HTR wakefield acceleration

Projects and measurements for achieving HTR

- Enhanced and high transformer ratios first observed at Argonne National Laboratory
 - > Dielectric structure based wakefield
 - Ramped bunch train by stacking of UV laser pulses
 - TR of 3.4 achieved
- HTR with shaped bunches also observed at ANL
 - Dielectric structure based wakefield
 - Triangular bunch shaping by transverse-longitudinal EEX
 - TR of up to ~5 achieved
- Current other projects on HTR PWFA
 - SPARC @ INFN: ramped bunch train by pulse-stacking
 - ANL: EEX-shaped triangular bunches
 - > FLASHForward: dual frequency shaped triangular bunches

C. Jing *et al.*, Phys. Rev. Lett. **98**, 144801 (2007)
C. Jing *et al.*, Phys. Rev. ST Accel. Beams **14**, 021302 (2011)

Q. Gao et al., Phys. Rev. Lett. 120, 114801 (2018)

E. Chiadroni *et al.*, NIM A **865**, pp. 139-143 (2017) R. J. Roussel, Poster @IPAC2019, **THPGW088** A. Aschikhin *et al.*, NIM A **806**, pp. 175-183 (2016)

Introduction to PITZ

Photo-Injector Test facility at DESY in Zeuthen (PITZ)

Experimental environment

- Test stand for photo electron guns of FLASH and European XFEL
- ≤ 25 MeV bunch energy
- High brightness
- Bunch charges **1 pC 4000 pC**
- Various diagnostics
 - Emittance
 - Longitudinal profile (TDS)
 - Longitudinal phase space, …
- Flexible electron bunch shapes

PITZ plasma cells

Lithium heat pipe oven and Argon gas discharge

- Cross-shaped metal vapour oven
- Side ionisation with UV-laser
- Max. design plasma density 10¹⁵ cm⁻³
- **Longitudinal profile shaping** of plasma density possible
- ► Gas-vacuum separation with µm-thin polymer windows
- O. Lishilin *et al., NIM A* **829**, pp. 37-42 (2016)

- **Gas discharge** in ~1 mbar Argon
- > 10 mm diameter, ~100 mm plasma column length
- 2 µs, ~300 A peak current pulses
- µm-thin polymer electron beam windows
- Densities <10¹³ cm⁻³ up to 3x10¹⁶ cm⁻³
- G. Loisch et al., J. Appl. Phys. 125, 063301 (2019)

Production of HTR-capable bunches

Photocathode laser-based bunch shaping

- Bunch shaping by photocathode laser pulse shaping
- Shaping by adding 14 Gaussian quasipulses ("Solc fan filter")
- Originally used for flattop bunches
- Powerful but complicated tuning
- Witness bunch by splitting pulse upstream of pulse shaper
- Efficient way of bunch shaping

G. Loisch et al., NIM A 909, pp. 107-110 (2018)

Self-Modulation Instability

Self-modulation instability (SMI)

Background & scope of experiments

Instability physics

- **Transverse modulation** of long bunches ($L_{bunch} > \lambda_{plasma}$)
- Initiated by inhomogeneities in focusing forces
- Proposed to provide proton driver trains for PWFA (AWAKE@CERN)

R. Assmann et al., Plasma Phys. Contr. Fusion 56, 084013 (2014)

Self-modulation at PITZ

- **Proof-of-principle** experiments
- Modulate flat-top electron bunches
- Investigate dynamics of instability, test theory models

SMI principle

Preliminary simulations

DESY. | HTR PWFA @ PITZ | Gregor Loisch | 10th IPAC, Melbourne 22.05.2019 |

M. Gross et al., *NIM A* **740**, pp. 74-80 (2018)

PITZ SMI experiments

First direct measurement of SMI

- Flat-top electron bunches
- ~1 nC bunch charge
- Interaction with Lithium plasma
- Use *rf*-deflector to measure time resolved transverse profile and energy
- Clear modulation visible
- Simulations show exponential growth of instability
- Also used for density measurements

G. Loisch et al., Plasma Phys. Contr. Fusion 61, 045012 (2019)

X-Z

M. Gross et al., Phys. Rev. Lett. 120, 144802 (2018)

High transformer ratio PWFA

- TR calculated from slice energy gain/loss
- > Plasma density of $\sim 2 \times 10^{13} \text{ cm}^{-3}$
- HTR also observed at other densities
- Simulations show TR of 4.3
- ~70% of witness particles lost

G. Loisch et al., Phys. Rev. Lett. 121, 064801 (2018)

Beam-plasma instabilities

- Measured max. TR of 5.0
- Long electron bunches prone to instabilities (self-modulation & hosing)
 - > Focus driver as much as possible
 - Operate at low plasma density
- Simulations predict stable transport at 2 x 10¹⁴ cm⁻³ max. density
- BUT: Only reached stable transport up to ~8 x 10¹³ cm⁻³

Driver slice envelope oscillations

- Large witness charge losses due to defocusing wakefields (& subsequent apertures)
 - Different focal spots of driver & witness
- BUT: Witness focusing not sufficient
- ► \rightarrow Betatron oscillations of driver envelope
 - Cause: uneven slice matching due to inhomogeneous focus of driver
- Also measured inhomogeneous driver deceleration: Min. deviation of 62% from mean deceleration in driver measured

Driver slice envelope oscillations

- Large witness charge losses due to defocusing wakefields (& subsequent apertures)
 - Different focal spots of driver & witness
- BUT: Witness focusing not sufficient
- \rightarrow Betatron oscillations of driver envelope
 - Cause: uneven slice matching due to inhomogeneous focus of driver
- Also measured inhomogeneous driver deceleration: Min. deviation of 62% from mean deceleration in driver measured

Beam transport with Solc filter shaping

- Inhomogeneous slice focus due to different space charge forces in slices at emission
 - Enhances SMI
 - Betatron oscillations of bunch envelope due to uneven matching
- Further issue: Very long driver shape tuning times
- → Need different, transverse & longitudinal laser pulse shaping technique

Advanced photocathode laser pulse shaping

Advanced photocathode laser shaping

Improvement of HTR PWFA @PITZ

- New photocathode laser in commissioning
- Originally designed to provide ellispoidal laser pulses for beam emittance reduction
- Transverse & longitudinal bunch shaping based on Spatial Light Modulator (SLM) masking of chirped pulses
 - > Independent shaping in x- λ and y- λ -planes
 - Direct control (fast & more accurate shaping)
 - Control slice parameters (homogeneous focusing)

I. Kuzmin *et al.*, Laser Phys. Lett. **16**, 015001 (2018) G. Loisch *et al.*, *NIM A* **909**, pp. 107-110 (2018) I. Kuzmin *et al.*, Appl. Opt. **58**, pp. 2678-2686 (2019)

Outlook

Ongoing work on SLM-based shaping

- Preliminary simulations show strongly reduced slice misalignment
- SLM shaping in IR set up
- First measurements show fast, stable and accurate shaping in frequency domain
- UV conversion being commissioned
- First shaped bunches expected this summer/fall
- → Bunch characterisation (& measurement of TR/efficiency)

Final goal: readiness of photocathode bunch shaping for **high energy accelerator**

Page 22

Summary

Future PWFA activities at PITZ

- High transformer ratios (~5) achieved at different facilities/in different wakefield schemes
- Not yet demonstrated HTR accelerator at parameters for application
- Studies ongoing to overcome current limitations
- Future studies at PITZ:
 - Direct observation of SMI growth
 - Demonstrate transverse & longitudinal photocathode laser bunch shaping of HTRcapable bunches based on SLMs
 - > Optimisation of TR & efficiency

See also Posters on Thu by O. Lishilin THPGW016 & THPGW017

Thank you for your attention!

Contact

DESY. Deutsches Elektronen-Synchrotron Gregor Loisch PITZ-T gregor.loisch@desy.de +49 33762 7-7185

www.desy.de