Electron Lenses: New Versatile Accelerator “Swiss Knife”

Vladimir SHILTSEV (Fermilab)
2019 International Particle Accelerator Conference
23 May 2019 – Melbourne, Australia
Tetsuji NISHIKAWA (1926-2010)

- 1964-66 BNL linac
- 1969 Japan National Lab for High Energy Physics
 - 12 GeV proton synchrotron
 - Neutron facility (→ J-PARC)
 - 500 MeV cancer treatment synchrotron
 - KEK Photon Factory
 - TRISTAN collider
THE FIRST MEETING OF THE US-JAPAN COMMITTEE ON HIGH ENERGY PHYSICS
SLAC - 1979
Shin-Ichi KUROKAWA
Chair of IPAC19 Prize Committee
2011 IPAC ROLF WIDEROE PRIZE
Many thanks to those who nominated me and to many colleagues I had fortune to work with over many years on the electron lenses, the Tevatron collider and many interesting and important topics from beam-beam effects to bent crystal collimation, ground motion and orbit stabilization, head-tail instability and super-fast HV pulsers, future collider designs and construction of IOTA ring, beam commissioning of the worlds’ best ILC CryoModule and very fast cycling HTS magnet.
Book (2014)

- A lot of illuminating material on the beam physics of supercolliders can be found in our 2014 book (with Valery Lebedev, eds.)

- Below, I mostly concentrate on the electron lenses and their applications
What Can Be Done With Electron Space Charge
Electron Lens

~4 mm dia 2 m long in 3T solenoid beam of ~10kV
~1A electrons (~10^{12}) can turn on/off in 0.5 usec
Electron Lens

~4 mm dia 2 m long in 3T solenoid beam of ~10kV
~1A electrons (~10^{12}) can turn on/off in 0.5 usec

generates strong radial electric field $E \sim 0.3$ MV/m
Two Electron Lenses Were Installed in Tevatron

TEL-1 in 2001
TEL-2 in 2004
(till 2011)

In the Fermilab Tevatron Collider:

- long-range beam-beam compensation (varied tune shift of individual 1 TeV bunches by 0.003-0.01);

- abort gap collimation (for 10 years in regular operation);

- studies of head-on beam-beam compensation;

 \textit{Shiltsev et al, NJP (2008); Stancari et al., PRL 107, 084802 (2011)}

- demonstration of halo scraping with hollow electron beams;

What Electron Lenses Are Good For (2)

Presently used in RHIC at BNL for head-on beam-beam compensation with significant luminosity gain \(\sim x2 \)

Current areas of research:

- **hollow electron beam collimation** of protons in the HL-LHC;

- **long-range beam-beam compensation** as current-bearing “wires” in the HL-LHC
 Valishev, Stancari, arXiv:1312.5006; Fartoukh et al., PRSTAB 18, 121001 (2015)

- **generation of nonlinear integrable lattices**, eg in IOTA
 Shiltsev et al, PRSTAB(1997), Nagaitsev, et al., IPAC’12; Stancari et al., IPAC’15

- to generate tune spread for **Landau damping** of coherent instabilities in the LHC, FCC-hh (better than 10,000 octupoles), FNAL Recycler
 Shiltsev (2006), Shiltsev, Alexahin, Burov, Valishev PRL (2018)

- **to compensate space-charge effects** in modern RCSs
 Burov, Foster, Shiltsev (2000), Stern et al, IPAC’18

versatile applications depending on e-beam profile + pulsing
Let me discuss here just one example: compensation of space-charge effects by electron lenses.
1000 Turns in a Ring with $dQ_{SC} = -0.9$

Case #1
1000 Turns in a Ring with $dQ_{sc} = -0.9$

Case #2

Focusing

Defocusing

1% error
1000 Turns in a Ring with $dQ_{sc} = -0.9$

Case #3

1% error

Electron lens

Focusing

Defocusing
Tune Footprint $dQ_{SC}=-0.9$

no e-lenses
Tune Footprint $dQ_{SC} = -0.9$

- $dQ_{SC} = -0.9$
- $dQ_{SC+EL} = -0.2$

no e-lenses

~75% e-lens compensation
Emittance Growth – Case #1

no error, no e-lenses
Emittance Growth – Case #2

1% error, no e-lenses

- 12 FODO symmetric lattice
- 12 FODO one quad 1% error
Emittance Growth – Case #3

1% error, 12 e-lenses

Graph showing the emittance growth with 1% error and 12 e-lenses.
Particle Losses at 4σ – Case #2 and #3

Integrated particle loss

- 12 FODO one quad 1% error
- 12 FODO one quad 1% error, 12 ideal lenses

% loss

0.25

0.20

0.15

0.10

0.05

0.00

turns

0

200

400

600

800

1000

e-lenses reduce losses ~6 fold!
Optimal Compensation ~75% (emitt. growth)

RCS Model, SYNERGIA, 16 M
Q_{x,y} = 3.7/3.8, dQ_{sc} = -0.9, Q_s = 0.08
1% lattice error, 12 electron lenses
E. Stern, et al.

Degree of e-Lens Compensation (%)
RMS Emittance Growth (% after 1000 turns)

no compensation
optimal compensation
Optimal Compensation ~70\% (beam losses)

RCS Model, SYNERGIA, 16 M
$Q_{x,y} = 3.7/3.8$, $dQ_{sc} = -0.9$, $Q_s = 0.08$
1\% lattice error, 12 electron lenses

E. Stern, et al.

Fractional Beam Loss (%) vs Degree of e-Lens Compensation (%)
IOTA: Integrable Optics Test Accelerator

C = 40 m
150 MeV/c e-
and 70 MeV/c p+
IOTA: Integrable Optics Test Accelerator
IOTA/FAST 2018/2019 Research Run

Real-time image of radiation of a single electron in the IOTA ring, courtesy A. Romanov

- Nonlinear Integrable Optics
- Single-electron tomography
- Initial experiments towards Optical Stochastic Cooling, Quantum Science
- Higher-Order Mode Measurements in the ILC SRF Cryomodule
- Magnetized beam manipulation technique (for the EIC project)
- Short-range wakefields studies
- **IPAC19: Invited talk T. Zolkin** (FRXPLS1)+17 posters: MOPGW113, MOPRB088, MOPGW107, MOPGW127, MOPRB089, MOPTS115, WEPTS068, WEPTS070, WEPTS074, WEPTS078, WEPTS073, MOPGW109, WEPGW100, WEPGW163, MOPGW108, THPRB106, TUPRB089
Linear $\mu^+\mu^-$ Crystal X-ray Collider

1 PeV = 1000 TeV

$n_\mu \sim 1000$

$n_B \sim 100$

$f_{rep} \sim 10^6$

$L \sim 10^{30-32}$

V. Shiltsev, Physics-Uspekhi 55 (10), 965 (2012)

IPAC19 Shiltsev | Nishikawa Prize
Fermilab, June 24-26, 2019

Workshop on Beam Acceleration in Crystals and Nanostructures

https://indico.fnal.gov/event/19478/

Organized by T. Tajima (UCI) and V. Shiltsev (FNAL)
Proceedings Editors: G. Mourou, V. Shiltsev, T. Tajima

Endorsed by: APS GPAP, APS DPB, ICFA ANA, ICUIL
APS Division of Physics of Beams (DPB) is the world’s largest and oldest (est. 1985) professional association of accelerator physicists and engineers. The DPB is a highly respected, international organization, open to all with interest in the science, technology and applications of accelerators.

Join us to strengthen the prestige and professional standing of accelerator physics and influence its future development! To learn more and sign up – please, see the American Physical Society (APS) table at this Conference or go to our Web site:

https://www.aps.org/units/dpb/
Celebrate Science! — 2019 is UNESCO’s Int’l Year of Periodic Table (150 yrs)

<table>
<thead>
<tr>
<th>Series</th>
<th>Zero Group</th>
<th>Group I</th>
<th>Group II</th>
<th>Group III</th>
<th>Group IV</th>
<th>Group V</th>
<th>Group VI</th>
<th>Group VII</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>He</td>
<td>Li</td>
<td>Be</td>
<td>B</td>
<td>C</td>
<td>N</td>
<td>O</td>
<td>F</td>
<td>Ne</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>Be</td>
<td>B</td>
<td>C</td>
<td>N</td>
<td>O</td>
<td>F</td>
<td>Ne</td>
<td>Na</td>
<td>Mg</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>Mg</td>
<td>Si</td>
<td>P</td>
<td>S</td>
<td>Cl</td>
<td>Ar</td>
<td>K</td>
<td>Ca</td>
<td>Sc</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>Ca</td>
<td>Ti</td>
<td>V</td>
<td>Cr</td>
<td>Mn</td>
<td>Fe</td>
<td>Co</td>
<td>Ni</td>
<td>Cu</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>Ni</td>
<td>Zn</td>
<td>Ga</td>
<td>Ge</td>
<td>As</td>
<td>Se</td>
<td>Br</td>
<td>Kr</td>
<td>Rb</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>Rb</td>
<td>Sr</td>
<td>Y</td>
<td>Zr</td>
<td>Nb</td>
<td>Mo</td>
<td>Tc</td>
<td>Ru</td>
<td>Rh</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>Rh</td>
<td>Pd</td>
<td>Ag</td>
<td>Cd</td>
<td>In</td>
<td>Sn</td>
<td>Sb</td>
<td>Te</td>
<td>I</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>I</td>
<td>Xe</td>
<td>Cs</td>
<td>Ba</td>
<td>La</td>
<td>Ce</td>
<td>Pr</td>
<td>Nd</td>
<td>Pm</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>Pm</td>
<td>Sm</td>
<td>Eu</td>
<td>Gd</td>
<td>Tb</td>
<td>Dy</td>
<td>Ho</td>
<td>Er</td>
<td>Tm</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
</tr>
<tr>
<td>Tm</td>
<td>Yb</td>
<td>Lu</td>
<td>Hf</td>
<td>Ta</td>
<td>W</td>
<td>Re</td>
<td>Os</td>
<td>Ir</td>
</tr>
<tr>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td>Ir</td>
<td>Pt</td>
<td>Au</td>
<td>Tl</td>
<td>Pb</td>
<td>Bi</td>
<td>Po</td>
<td>At</td>
<td>Rn</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
</tr>
<tr>
<td>Rn</td>
<td>Fr</td>
<td>Ra</td>
<td>Ac</td>
<td>Th</td>
<td>Pa</td>
<td>U</td>
<td>Np</td>
<td>Pu</td>
</tr>
</tbody>
</table>

1869

[Image of Dmitri Mendeleev]

[Image of a science magazine cover]
Thank You for Your Attention!