SRF Operation at XFEL: Lessons Learned After More Than One Year

Denis Kostin MSL, DESY, Hamburg, Germany for the European-XFEL Accelerator Consortium

IPAC 2019, Melbourne, May 20th, 2019.

SRF Operation at XFEL: Lessons Learned After More Than One Year

Denis Kostin, May 20th, 2019

Outline

1. INTRODUCTION

- Eu-XFEL: General Layout
- Eu-XFEL: SRF Technology
- Eu-XFEL: Timeline
- RF Power Distribution
- Fundamental Power Couplers

2. REACHING THE DESIGN ENERGY

- Reaching the Design Energy
- SRF Cavities: Performance
- SRF Cavities: Limits
- SRF Cavities: Operation

3. OPERATION

- Tunnel Radiation
- Cryogenics
- Cavity Piezo Drivers
- Eu-XFEL: Current Operation

4. OUTLOOK

- Possible CW Upgrade
- Summary

600

10

2700

4.5

≤ 1

4.5

0.65

Length of accelerator: 1500 m Length of facility: 3400 m **101 Cryo Modules (97 installed now)** 8 SRF 9-cell cavities per CM

European XFEL

Beam pulse length	μs
Repetition rate	Hz
Max. # of bunches per pulse	
Min. bunch spacing	MHz
Bunch charge	nC
max. beam current	mA
Nominal beam DF	%
Average Gradient	MV/m

- 650 µs long RF pulse in gun and accelerating modules
- Operation energy 8 16.5 GeV
- LLRF takes into account electron beam induced fields
- Energy jitter over bunch train <10⁻⁴
- No beam losses

5

RESEARCH FOR GRAND CHALLENGES

HELMHOLTZ ESEARCH FOR GRAND CHALLENGE

DESY.

HELMHOLTZ

A2

BC0

Gun A1 AH1 LH

European XFEL

Cryomodule Waveguide Distribution System (WDS) tailored to match forward power to each cavity within practical limits

RF Power Distribution

- All CM were cold-tested in Accelerating Module Test Facility (AMTF)
- Cavities operational limits:
 - Quench
 - Field Emission (X-ray monitor threshold 10⁻² mGy/min)
 - 31 MV/m power limit (administrative)
- E_{acc} measurement error ~10%

DESY

Fundamental Power Couplers

- Main coupler design for the Eu-XFEL linac is well established and proven.
- All of 25 Eu-XFEL RF stations 776 couplers are conditioned except
 - 4 FPCs were not conditionable and showing T70K overheating – shorted / disconnected from the RF source.
- Couplers operation stable since over two years of Eu-XFEL operation – no other shorted (not used) couplers.
- FPC cold window temperature (T70K) increase with high RF power on some couplers shows, that proper coupler cooling could be rather critical – currently it is not a problem for the operation.
 - FPC conditioning (warm and cold) is important for the linac operation.

- **Eu-XFEL fundamental power coupler** consists of warm, cold and waveguide main parts. Coaxial coupler is made of copper and copper plated (10/30µm) stainless steel with two alumina TiN coated ceramic windows.
- Motorized antenna tuning (±10mm) allows for Q_{load} adjustment (10⁶..10⁷). Operating Qload is 4.6×10⁶.
 All FPCs are pre-conditioned up to 1 MW pulsed RF power up to 400 µs RF pulse length and up to 500 kW with 1.3 ms pulse, repetition rate is 10Hz.

Reaching the Design Energy

- Maximum Gradient Task Force (MGTF)
- start on 21.06.2017
- 20 of 20 stations in L3 investigated
- 1 of 3 stations in L2 investigated
- 40 investigations done
- 17.6 GeV at TLD on 12.7.2018
- With 2.6 GeV after BC2
- Further investigations followed
- 17.6 GeV at TI D on 18.7 2018
- With design energy of 2.4 GeV after BC2
- Energy gain due to MGTF: 1.9 GeV
- Nearly 11% of final energy
- Equal to about 2.4 L3 RF stations

E max [GeV]

SRF Cavities: Performance

Regarding AMTF tests

Before MGTF (23.6.2017 up to CS8 and 12.7.2018 for CS9)

After MGTF (30.01.2019)

Reached an average of 93.6% of AMTF performance

European XFEL

SRF Cavities: Limits

Quench (soft quenching)

- Field emission (500 μSv/h neutrons)
- Power / missing piezo operation
- Other limitations \rightarrow solved
 - Waveguide sparking
 - Too low klystron power

European XFEL

- Cryogenics
- In some cases, there are potential energy gains from further optimization of the WDS

Detuned cavities (31.01.2019)

Reason of detuning	Number of cavities
After AMTF tests	5 (~0.6%)
After tests in XTL (coupler)	4 (~0.5%)
MGTF	12 (~1.5%)
Sum	21 (~2.7%)

	A4.M4.C4	coupler problem: T70K
	A6.M3.C1	cavity problem: high FE/X-rays (10MV/m limit)
	A6.M3.C5	MGTF: too much power to this cavity (higher V_VS without)
	A6.M3.C6	MGTF: too much power to this cavity (higher V_VS without)
	A7.M1.C7	MGTF: too much power to this cavity (higher V_VS without), degradation
	A7.M2.C3	MGTF: too much power to this cavity (higher V_VS without)
	A7.M2.C7	cavity problem: high FE/X-rays (11MV/m limit)
	A8.M4.C1	MGTF: too much power to this cavity (higher V_VS without)
	A8.M4.C4	MGTF: too much power to this cavity (higher V_VS without)
	A8.M4.C5	MGTF: too much power to this cavity (higher V_VS without)
	A10.M1.C3	cavity problem: low Eacc BD (no FE) (13MV/m limit)
	A12.M2.C2	MGTF: too much power to this cavity (higher V_VS without)
	A12.M3.C8	MGTF: too much power to this cavity (higher V_VS without)
	A12.M4.C1	coupler problem: T70K
	A14.M3.C5	MGTF: high cryo-losses (already at AMTF observed)
	A16.M2.C1	coupler problem: T70K
	A17.M3.C7	MGTF: too much power to this cavity (higher V_VS without)
	A18.M4.C4	wrong WG-distribution 31MV/m (FE limit at 23MV/m)
	A20.M4.C1	coupler problem: T70K
	A21.M3.C4	cavity problem: low Eacc BD (no FE) (14MV/m limit)
	A21.M4.C2	MGTF: too much power to this cavity (higher V VS without), degradation

Tunnel Radiation

- Radiation (gamma and neutrons) measurement is an important tool to understand the machine operation.
- There are different techniques Rad-FET, TLDs, BLMs, Gamma and Neutron Sensors – including a remote-controlled robot system (MARWIN).
- MARWIN measurement examples
- Radiation in the linac is almost entirely RF related (Field Emission / Dark Current).
- Radiation due to beam particle loss can be seen in collimation sections as expected
- Only three RF stations (A6, A9, A12) are limited by the radiation at max.energy.
- No degradation radiation values do change with cavities accelerating gradient and tuning – understandable.

Cryogenics

- Eu-XFEL cryo-plant (4K) 2 years in the operation since successful commissioning
- the performance results comply within the error margin with the specification: 2K cryo-losses set to ~5 W/CM, measured <6.3 W/CM at 17.5GeV</p>

The 2K pressure stability is excellent

- 0.6% peak-to-peak, 0.3% RMS
- The cascaded pressure regulation in combination with the automatic heat load compensation improved the pressure stability significantly
- Even dynamic procedures (power ramping, RF-shutdown, etc.) can be compensated quite well without affecting the pressure stability drastically

There are some problems with bearings of the cold compressor motors

- New motor design is being developed, improvements are being done as well
- The recovery effort after a cold compressor shutdown (e.g. bearing failure) is minimized by the automation and cryogenic system configuration

Eu-XFEL cryogenic system:

2K cryogenic heat load at 17.5 GeV (July 2018)

Detunina

Cavity Piezo Drivers

Test run at A24

Piezo driver electronics installed at all RF stations

Cable checking is scheduled now, then...

- Cable fixing
- Commissioning
- AC/DC feedback operation

Test operation at A24 since end of April

- Less forward power required for same VS voltage (-1.1%)
- Detuning kept stably around 0 Hz

Eu-XFEL: Current Operation

run with 1 or 2 RF-stations off-beam as a spare

ENERGY I1 / BC0 - FT 1

Chirp

-8.51 1/m

- 8.50

R₅₆ -50.95 mm

Sum Volt

\$91.12

RF/LLRF-FT1

M Energy gain

510 @ 101 %

🚑 700.9 MeV

Chirp

-10.50 1/m

-10.51

R₅₆ -30,28 mm

Sum Volt

1763.81 MeV

1763.49

Chirp -12.00 1/m

-12.00

R₅₆

-50.00 mm

Sum Volt

128.49 MeV

128.50

Curvature

÷232.82

BC2 Mode 💙 🙃 Sase2 Mode 🗸 🤅

510 @ 101 %

== 127.4 MeV

== 130.1 Me\

XFEL Cockpit Main.xml

XFEL COCKPIT

Beam allowed / Shutter

LASER / TIMING - ALL

Gun Mode 🂋 즍

OVERVIEW - SUBTRAIN: ALL

Injector Mode 🧭 🙃

510 @ 253 pC

548 us

55.9 MV/n

Beam OFF

SubSystems V SUBTRAIN - ALL

Type 1 Type 2 Type 3

Bunch Pattern Timing

BC1 Mode 🗸 💮 Sase1/3 Mode 🗸 💮

510 @ 101 %

127.8 MeV

^**2**50

Linac Mode 🗸 🙃

VEEI

Bunche

MAGNETS

Emittance x/y: 0.50 / 0.34 mm mrad Mismatch x/y: 1.98 / 1.53

Current beam energy: 14 GeV – 2 RF-stations off-beam (user operation).

Next planned beam energy: 16.5 GeV – 1 RF-station off-beam (user operation).

European XFEL

22

Possible CW Upgrade

- Continuous Wave (CW) mode is the origin of the SRF accelerator technology. Eu-XFEL project was based on the Linear Collider (LC) technology (TESLA) operating in the pulsed RF power mode (10 Hz / 650 µs beam pulse). Many FEL user experiments will get an advantage (or become possible) with CW mode operation.
- Possible beam parameters: 25 μA (100 pC and 250 kHz) with 8 GeV (CW) and 12 GeV (long-pulse: ~100ms).
- Several CMs were successfully tested in CW and longpulse mode in CMTB at DESY.

The Upgrade Plan:

- 1. Replace the front-end cryomodules (17x)
 - Larger cooling capability
 - CW optimized cavities
- 2. Install CW capable RF sources
 - 1× **IOT** per RF station
- 3. Double the cryo plant (cost driver)
 - $2.5 \rightarrow 5 kW$
- 4. CW electron gun (preferred option: SRF gun).
- 5. The former front-end cryomodules can be installed at the end of the linac to lengthen L3 (+4 RF stations), no further action required in L3 (>1km).
- 6. The upgraded XFEL would be capable of short pulse, long pulse AND CW operation.

Summary

- 1. European XFEL operates since over two years without major problems.
- 2. Important project milestones 17.5 GeV and 27000 bunches/s (no lasing) achieved.
- 3. Current beam energy: 8 16.5 GeV (user operation).
- 4. Initial achieved station voltages were consistent with production module tests projections including errors.
- 5. MGTF carefully studied and tuned each station individually, eventually achieving >90% of projected estimate.
- 6. Currently running with 21 cavities detuned 12 detuned as a result of the MGTF studies.
- 7. Tunnel radiation (dark current): currently considered safely within limits, but will continue to monitor/study.
- 8. Focus now on maintaining identified max. limits operationally root causes analysis of trips, etc.
- 9. A possible CW operation upgrade is under study.

Acknowledgements

I want to express my gratitude to all colleagues from the European-XFEL Consortium contributing to and supporting the machine building, commissioning and successful operation.

Special thanks to my DESY colleagues: J.Branlard, W.Decking, M.Omet, T.Schnautz and N.Walker.

