

Challenges to Higher Beam Power in J-PARC: Achieved Performance and Future Prospects

> IPAC 2019 May 20th 2019 MOYPLM1

Susumu Igarashi KEK/J-PARC for the J-PARC Accelerator Group

- Introduction to J-PARC
- Linac and RCS: Operation status and upgrade plan
- MR: Slow extraction operation status and upgrade plan
- MR: Fast extraction operation status and upgrade plan
- Summary

Presentations about J-PARC in IPAC19

- 1. M. Otani, "Negative Muonium Ion Production With a C12A7 Electron Film"
- K. Okamura, "Development of a Pulsed Power Supply Utilizing 13 kV Class SiC-MOSFET"
- 3. H. Nishiguchi, "Extinction Measurement of J-PARC MR with 8 GeV Proton Beam for the New Muon-to-Electron Conversion Search Experiment-COMET"
- 4. H. Iinuma, "Beam Transport Design for a Strongly X-Y Coupled Muon Beam for the J-PARC g-2/edm Experiment"
- 5. Y. Shobuda, "Coupling Impedance of the Collimator Without RF-Shields at RCS in J-PARC"
- 6. A. Kobayashi, "Study of Tune Shift for Higher Beam Power at J-PARC Main Ring"
- 7. P.K. Saha, "Dynamic approaches in the ORBIT Simulation and Measurement Results of Transverse Beam Instability Mitigation in the 3-GeV RCS of J-PARC"
- 8. Y. Nakazawa, "Development of Inter-Digital H-Mode Drift-Tube Linac Prototype With Alternative Phase Focusing for a Muon Linac in the J-PARC Muon G-2/EDM Experiment"
- 9. C. Ohmori, "Conceptual Design of Negative-Muon Decelerator for Material Science"
- Y. Kondo, "Upgrade of the 3-MeV Linac for Development of Accelerator Components at J-PARC"
- 11. M. Otani, "Longitudinal Measurements and Beam Tuning in the J-PARC Linac MEBT1"
- 12. J. Tamura, "The First Replacement of the RF Window of the ACS Cavity in the J-PARC Linac"
- 13. J. Tamura, "VSWR Adjustment for ACS Cavity in J-PARC Linac"
- 14. J. Kamiya, "Upgrade of a Titanium Vacuum Chamber for Radiation Shield at Beam Injection Area of J-PARC RCS"
- 15. K. Miura, "Magnet Power Supply Calibration with a Portable Current Measuring Unit at the J-PARC Main Ring"
- 16. T. Shimogawa, "New Power Supply of Main Magnets for J-Parc Main Ring Upgrade"
- 17. Y. Liu, "Comissioning Progress for Power Upgrade of J-PARC Linac"
- 18. T. Shibata, "The New Eddy Current type Septum Magnets for Upgrading of Fast Extraction in Main Ring of J-PARC"
- 19. T. Shibata, "The New High Field Septum Magnets for Upgrading of Fast Extraction in Main Ring of J-PARC"
- 21. M.J. Shirakata, "Radiation Design of New 30 kW Beam Dump of J-PARC Main Ring"
- 22. H. Hotchi, "J-PARC RCS: High-Order Field Components Inherent in the Injection Bump Magnets and Their Effects on the Circulating Beam During Multi-Turn Injection"

- 23. T. Takayanagi, "Development of Low Inductance Circuit for Radially Symmetric Circuit"
- 24. M. Yamamoto, "Vacuum Tube Operation Analysis for 1.2 MW Beam Acceleration in J-PARC RCS"
- 25. J. Kamiya, "Operation Status of J-PARC Rapid Cycling Synchrotron"
- 26. Y. Hashimoto, "BEAM PROFILE MONITOR FOR SLOW EXTRACTED BEAM USING MULTI-LAYERED GRAPHENE AT J-PARC"
- 27. J. Kamiya, "Performance Verification of 2-D Beam Profile Monitor Using Gas Sheet at J-PARC Linac"
- 28. R. Kitamura, "Development of the Bunch Shape Monitor Using the Carbon-Nano Tube Wire"
- 29. K. Sato, "Multi-Ribbon Profile Monitor for High Power Proton Beam at J-Parc MR Abort Line"
- 30. M. Yotsuzuka, "Performance of the Longitudinal Beam Monitor With High Time Resolution for a Muon Linac in the J-PARC E34 Experiment"
- 31. R. Muto, "Current Status of Slow Extraction from J-PARC Main Ring"
- 32. K. Okamura, "A Consideration on the Transfer Function Between RQ Field and Slow Extraction Spill in the Main Ring of J-Parc"
- 33. M. Tomizawa, "8 Gev Slow Extraction Beam Test for Muon to Electron Conversion Search Experiment at J-PARC"
- 34. F. Tamura, "Simulations of Beam Loading Compensation in a Wideband Accelerating Cavity Using a Circuit Simulator Including a LLRF Feedback Control"
- 35. T. Yasui, "Tune Shifts and Optics Modulations in the High Intensity Operation at J-PARC MR"
- 36. K. Moriya, "Energy Measurement and Correction for Stable Operation in J-PARC"
- 37. H. Takahashi, "Development of Beam Window Protection System for J-PARC Linac"
- 38. T. Toyama, "Improved Frequency Characteristics Using Multiple Stripline Kickers"
- S. Li, "The Realization of Iterative Learning Control for J-PARC LINAC LLRF Control System"
- 40. M. Kinsho, "Effect of Nitric Fluroric Acid Treatment on Brazing of Alumina Ceramics and Pure Titanium"
- 41. T. Sugimoto, "Resent Improvements and Future Upgrades of the J-PARC Main Ring Kicker Systems"

Japan Proton Accelerator Research Complex

- High Intensity Proton Accelerators
- Facilities to use the secondary beams
- Operated by Japan Atomic Energy Agency (JAEA) and High Energy Accelerator Research Organization (KEK)
- LINAC (400 MeV)
- Rapid Cycling Synchrotron (RCS) (3 GeV)
 - Materials and Life Science Experimental Facility (MLF)

- Main Ring (MR) (30 GeV)
 - Hadron Hall
 - Neutrino Facility

High Power Beams to Users

Materials and Life Science Experimental Facility (MLF) (2008–)

- 21 Neutron beam lines
- 3 Muon beam lines
- RCS Design Beam Power : 1 MW

Future Plan of the MLF Second Target Station

- New design of target, moderators, reflectors
- Neutron Brightness : > 20 times
- Muon Intensity : > 50 times
- RCS Beam Power : 1.5 MW

Future Program with the Linac Beam :

Proton Irradiation Facility with laboratories of

- Post irradiation examination
- Accelerator development for ADS
- 400 MeV, 250 kW

High Power Beams to Users

Neutrino Facility (2009–)

• Long baseline neutrino oscillation experiment (T2K)

J-PARC Main Ring Beam Power Upgrade

- Upgrade Plan for the Neutrino Experiment
- Far Detector
 - 50 kton → 260 kton
 Water Cerenkov detector
- MR Beam Power
 - $-750 \text{ kW} \rightarrow 1.3 \text{ MW}$

- Introduction to J-PARC
- Linac and RCS: Operation status and upgrade plan
- MR: Slow extraction operation status and upgrade plan
- MR: Fast extraction operation status and upgrade plan
- Summary

Linac: Operation Status

- Tuning of the ion source, LEBT, RFQ and chopper
- Transverse optic matching at MEBT1, MEBT2 and L3BT
- RF phase scan of DTL, SDTL and ACS.
- The intra-beam stripping of $\mathrm{H}^{\scriptscriptstyle -}$ causes serious beam losses in ACS.
- The new lattice has been demonstrated for ACS with Txy/Tz = 0.7 from the original equipartitioned lattice.
- Meanwhile the transverse and longitudinal coupling instability by the space charge effect was not observed.

9

Y. Liu TUPTS027 M. Otani MOPTS048

Rapid Cycling Synchrotron: Parameters

Circumference: 348.333 m

Super-periodicity: 3 Harmonic number: 2 Injection Energy: 400 MeV Extraction Energy: 3 GeV Original Design Beam Power: 1 MW

- Large Aperture: 486π mmmrad
 - Painting injection during 0.5 ms (307 turns)
- Beam Loss Localization with Collimators
- Lattice for high transition γ : 9.14

Repetition Rate: 25 Hz Ramping Pattern: Sinusoidal

Dipole Magnets: 24 Quadrupole Magnets: 60 (7 families) Sextupole Magnets: 18 (3 families) Steering Magnets: 52 RF Cavities: 12 (Fundamental 440 kV, 2nd 180 kV)

Beam Power History at MLF

- The beam power of the recent user operation is 530 kW.
- The power will be increased by carefully confirming the soundness of the neutron production target.
- The operation of the original beam power target of 1 MW was successfully demonstrated.

11

H. Hotchi TUPTS033

RCS: 1-MW Operation and the Beam Loss Reduction

- A stable 1-hour operation of the 1-MW beam was successfully achieved with 25 Hz and the following operational parameters.
 - Transverse painting area: 200π mmmrad.
 - Sextupole field patterns:
 - Correction of the resonance of vx–2vy=-6 for beam loss reduction (t < 5 ms)
 - Chromaticity manipulation for instability suppression (t > 9 ms)
 - Momentum offset applied in longitudinal painting: -0.1 %
 - The 2nd harmonic RF is applied for the larger bunching factor.
- The beam loss of 10^{-3} level was achieved and the loss was localized at the collimators.

RCS: High Power Operation beyond 1 MW

H. Hotchi TUPTS033 M. Yamamoto TUPTS035 F. TamuraWEPRB026

13

- The upgrade is planned for 1.5 MW with the 2^{nd} target station of MLF.
- The operation of 1.2 MW equiv. was demonstrated for the acceleration of up to 1 GeV.
- RF system will be upgraded this summer for the beam loading compensation for the beam power beyond 1 MW.

- Introduction to J-PARC
- Linac and RCS: Operation status and upgrade plan
- MR: Slow extraction operation status and upgrade plan
- MR: Fast extraction operation status and upgrade plan
- Summary

MR Design and Operation Modes

- Circumference: 1567.5 m
- Three-fold symmetry
- Harmonic number: 9

Magnet Current (A)

2000

1600

1200

800

400

0

2

Time (s)

SX (5.2 s)

8

10

- Original Design Beam Power: 750 kW
 - Large Aperture
 - Beam Loss Localization
 - Imaginary Transition γ Lattice
- Slow extraction mode (SX) for the hadron hall: 2s-spill extraction.
- Fast extraction mode (FX) for the neutrino Facility: 1 turn extraction.

Slow Extraction Tunings and the Beam Loss Reduction

- Extraction scheme with a third order resonance of vx = 22.33
- The extraction efficiency of 99.5% was achieved with fine tunings of
 - Main Quadrupole Magnets
 - Resonant Sextupole Magnets
 - Bump Magnets
 - Electro-Static Septum (ESS) 30 μ m W ribbons at high β =40 m
 - Septum Magnets (SMS)

Slow Extraction Tunings for the Beam Spill

R. Muto WEPMP007 K. Okamura WEPMP008

- The SX beam power of 51 kW is achieved for user operation, which is limited by the target capacity.
- Users prefer uniform extraction of beam spill in 2 s.
- The spill duty is tuned with the following instruments.
 - Main quadrupole magnets are ramped to move the tune toward the resonance of 3vx = 67.
 - Correction Quadrupoles (EQ and RQ) are feedbacked by the signals of the spill monitor.
 - Transverse RF is adapted for further improvement of spill duty.
- The target will be upgraded this summer for the capacity of 57 kW \rightarrow 95 kW.

- The COherent Muon to Electron Transition (COMET) experiment to search for the process of lepton flavor violation requires
 - slow extraction of 8 GeV beam for suppression of the anti-proton production and
 - sparse bunched beam for the signal detection with the extinction ratio of 10^{-10} for the empty bucket.
 - Empty bucket production with RF chopper
 - 1 bunch acceleration in RCS
 - Injection kicker timing shift in MR
- The proton beam required for the phase 1 was delivered to Hadron hall to measure extinction factor of secondary beam.

- Introduction to J-PARC
- Linac and RCS: Operation status and upgrade plan
- MR: Slow extraction operation status and upgrade plan
- MR: Fast extraction operation status and upgrade plan
- Summary

MR Beam Power History

- The beam of 490 kW has been provided stably with the beam loss of 500 W in the recent FX operation.
- The user operation of 500 kW for 50 shots was achieved with the beam loss of 700 W.

Typical Operation Status for FX

- Beam Power : 504 kW
- Cycle Time : 2.48 sec
- Number of protons at injection : 3.3×10^{13} protons per bunch (ppb) $\times 8$
- Number of protons at extraction : 2.61×10^{14} protons per pulse (ppp)
- Beam Loss : \sim 700 W < Collimator Capacity: 2 kW

Tunings for the Beam Loss Reduction

- MR Power 500 kW
- Space Charge Tune Shift: 0.4
 - Simulation based on the measured transverse emittances and bunching factor
- RCS parameters optimization for the injection beam
- 2nd harmonic RF
- Optics measurements and corrections
 - with trim coils of main Q magnets for the leak fields of the FX septum magnets.
- Third order resonance corrections - with trim coils of four S magnets.
- Transverse instability suppression
 - with chromaticity parameters and
 - Intra-bunch feedback system.

Beam Power Upgrade Concept

	Beam Power	Cycle Time	Number of accelerated protons	Equivalent beam power in RCS
Present	500 kW	2.48 s	2.6×10 ¹⁴ ppp	780 kW
Original Design	750 kW	1.32 s	2.1×10 ¹⁴ ppp	610 kW
New Plan	1.3 MW	1.16 s	3.3×10 ¹⁴ ppp	1 MW

- For the Beam power upgrade of 500 kW \rightarrow 1.3 MW
 - Factor of 2 by faster cycling
 - $\sim 30\%$ gain by intensity increase

Mid-term Plan of MR

FX: Faster cycling: 2.48 s \rightarrow 1.32 s for 750 kW \rightarrow 1.16 s for 1.3 MW SX: Mitigation of the residual radiation for 100 kW

JFY	2017	2018	2019	2020	2021	2022	2023	2024
Event New b	uildings		HD target		Long shutdown			
FX power [kW]	475	500	500	500		>700	800	900
SX power [kW]	50	50	50	70		> 80	> 80	> 80
Cycle time of main magnet PS New magnet PS	2.48 s	2.48 s Mass produc	2.48s ction/installatio	2.48s		1.32 s	<1.32s	<1.32s
High gradient rf system 2 nd harmonic rf system	Manufacture, installation/test						==\$	
Ring collimators	Capacity 2 kW				Capacity 3.5kW			
Injection system	Kicker PS improvement, Septa manufacture /test							
FX system	Kicker PS improvement, FX septa manufacture /test							
SX collimator / Local shields						Local s	shields 🗖 💳	>
Ti ducts and SX devices with Ti chamber	Ti-ESS-1							

• A new power supply was designed with capacitor banks for the cycle of 1.3 s.

• The power supplies for the BM families are being constructed and tested.

Installation Plan for RF Cavities

- Higher RF voltages are necessary for the faster cycling.
- The following numbers of RF cavities are necessary for the operation of 1.32 s and 1.16 s.
- For 1.16 s operation, 11 fundamental cavities and 2 second harmonic cavities.
- Upgrade of the anode power supplies are planned for the beam loading compensation.

	2016	2017	2018	2022	202X
Events				MR 1.32-sec operation	MR 1.16-sec operation
FT3L 4GAP Cavities	7	7	7	9	9
additional 4GAP Cavity	-	-	-	-	2
2 nd harmonic cavity	2	2	2	2	2
Accelerating voltage	300-390 kV	300-390 kV	300-390 kV	510 kV	600 kV
(2 nd Harmonic)	110 kV	110 kV	110 kV	120 kV	120 kV

Insertion C

Ins A: 2 2nd harmonic cavities Ins B: 2 fundamental cavities Ins C: 9 fundamental cavities

Simulation Studies on Dynamic Aperture for the Beam Loss Reduction

- Beam loss should be reduced for the beam intensity increase of $\sim 30\%$.
- Dynamic aperture at the current operation tune of (21.35, 21.45) is affected by the structure resonance of vx-2vy = -21.
- Working points of (22.35, 22.45) and (21.35, 20.45) may be free from the structure resonances.
 - Beam study is necessary for the new working points. New possible Dynamic aperture survey (22.35, 22.5 (No magnetic error/ no space charge) Aperture Score (21,xx, 21,xx) No error, Chrom 75%, dp=0.0%22 Current w. p 21.39 vv Score 21 35 21 21.5 21.32 νy 21 21.25 6 New possible w. p. 21.18 20.5 21.11 <3 ∎ 20 [⊡] 21 21.04 21.5 22 22.5 23 21.05 21.1 21.15 21.2 21.25 21.3 21.35 21.4 21.45 vx vx

MR FX Beam Power Projection

Multi-MW Beams to the Neutrino Experiment

- 3.2 MW with a new 8-GeV Booster in J-PARC
- 9 MW with a 9-GeV proton driver in the KEKB Tunnel after the B-factory project.

For the acceleration in the 2nd to 4th straight section, the ILC cavity is adopted.

- Peak current : 100 mA (pulse)
- Beam duty : 1 %

- Beam power : 9 GeV x 0.1 A x 1 % = **9 MW**

R&Ds : High duty horn, higher gradient SC cavity, high power target 9 .

Summary

- J-PARC accelerators have been providing high power beams for 10 or more years to users at
 - Materials and Life Science Experimental Facility
 - Hadron Experimental Hall
 - Neutrino Facility.
- The Linac original design current of 50 mA was achieved with efforts of beam loss reduction.
 - The operation of 60 mA was demonstrated in the beam study.
- With RCS, the one-hour stable operation of 1 MW was achieved with the loss of 10^{-3} level.
 - The beam power of 1.2 MW equivalent was demonstrated in the beam study.
 - The beam power of 1.44 MW will be tested for the upgrade plan.
- MR delivers the SX beam to the hadron hall with the beam power of 51 kW and the extraction efficiency of 99.5%.
 - Hadron target will be upgraded this summer for the capacity of $57 \text{ kW} \rightarrow 95 \text{ kW}$.
 - The proton beam of 8 GeV required for the phase 1 of the muon to electron conversion search experiment (COMET) was delivered to hadron hall to measure extinction factor of secondary beam.
- The beam power of 500 kW was achieved for the MR FX operation.
 - The beam power upgrade of 1.3 MW is planned with
 - faster cycling : 2.48 s \rightarrow 1.16 s, and accelerated protons : 2.6×10^{14} ppp $\rightarrow 3.3 \times 10^{14}$ ppp.
 - Possibilities are being explored for the beam power of multi-MW for the neutrino experiment.