

Dong Wang Shanghai Advanced Research Institute (SARI) ,Chinese Academy of Sciences SHINE(Shanghai High Repetition XFEL and Extreme Light)

> International Particle Accelerator Conference 2019 May 24, 2019, Melbourne, Australia

Acknowledgements

- Z.H. Bai(HALS). K.T. Hsu(TPS), J.C. Huang(TPS), T. Ishikawa(SPring-8), Y. Jiao(HEPS), H-S. Kang(PAL-XFEL), P. Klysubun(SPS/SPS-II), I-S. Ko (PAL-XFEL), B. Liu (SXFEL/SHINE), Nishimori (Tohoku), Q. Qin(HEPS), E. Tan(Australian Synchrotron), H. Tanaka(SPring-8), L. Wang(HALS), X.M.
 - Yang(DCLS), W.Q. Zhang(DCLS), Z.T. Zhao(SSRF/SXFEL/SHINE)

Synchrotron and FEL Light Sources: complementary

Synchrotron light source

- High brightness x-ray
- Large number of beamlines/stations
- Very reliable/stable operation

High gain free electron laser

- Fully coherent and ultra fast
- Ultra high brightness x-ray
- Increasing number of beamlines/stations

Light Sources in Asia/Oceania Region

- Australia: Australian Synchrotron(Clayton)
- China: BSRF(Beijing), SSRF(Shanghai), NSRF (Hefei), SXFEL&SHINE (Shanghai), HEPS(Beijing), HALS(Hefei), etc.
- India: Indus-II(Indore), Kolkata
- Japan: PF&PF-AR (Tsukuba), UVSOR(Okazaki),AICHI SR (Seto), RITUMEI SRC (Kusatsu), SPring-8, SPring-8-II, SACLA, NEW SUBARU (Harima), HiSOR (Hiroshima), Kyushu SR (Tosu), SLiT (Sendai)
- Korea: PLS-II, PAL-XFEL (Pohang)
- Singapore: SSLS (Singapore)
- **Taiwan:** TLS, TPS (Hsinchu)
- Thailand: SPS (Nakhon Rat.) , SPS-II (Rayong)

The 3rd Generation Light Sources in Asia/Oceania

Facility	Location	Energy	Emittance	Next step	Note
In operation					
Spring-8	Harima, Japan	8.0 GeV	3.0 nm	Spring-8-II	
SSRF	Shanghai, China	3.5 GeV	3.9 nm	19 more beamlines	2016-2022
Australian Synchrotron	Clayton, Australia	3.0 GeV	10.5 nm		
PLS-II	Pohang, Korea	3.0 GeV	5.8 nm		
TPS	Tsinchu, Taiwan	3.0 GeV	1.6 nm	Phase-II Beamlines	2020 -
TLS	Tsinchu, Taiwan	1.5 GeV	22 nm		
New projects					
Tohuku Light Source	Sendai, Japan	3.0 GeV	1 nm	Kickoff: 2019.3	
HEPS	Huairou, China	6.0 GeV	< 60 pm	Kickoff: 2019.6	
SPS-II	Rayong, Thailand	3.0 GeV	~ 1 nm	Approved 2019.1	
HALS	Hefei, China	2.4 GeV	< 30 pm	R&D underway	2021

SACLA, an 8 GeV XFEL facilityUser operation since March 2012

SPring-8, an 8 GeV 3rd Gen. SR facility User operation since Oct. 1997

Courtesy: T. Ishikawa

Concept of SPring-8-II - Sustainable high performance source -

Dramatic reduction of power consumption

- Lowering beam energy (8GeV → 6GeV)
- Permanent-magnet
 dipole
- Shutdown of existing ring injector

Advanced accelerator technology and operational experiences

• Multi-bend achromat (MBA) lattice achieving ultra-low emittance

- Short period undulator
- Beam injection from SACLA linac
- Experiences on top-up operations and orbit stabilization

 Dramatic brilliance enhancement

- Brighter hard X-rays
- Ultimate beam stability

Spring-8-II: main machine parameter, unit cell, prototyping

	SPring-8-II
E [GeV]	6
I [mA]	200
C [m]	1435.45
Lattice	5BA (w/ Long. Var.)
ε [nmrad]	0.157~0.10 w/ und
(β _x , β _y) [m] @ ID	(5.5, 2.2)
η _x [m] @ ID	0.0
(v _x , v _y)	(108.10, 44.58)
(ξ _x , ξ _y) _{natural}	(-143, -147)
α	3.24e-5
σ _{Δp/p} [%]	0.093
к [%]	10
h	2436
f _{RF} [Hz]	508.76
∆U [MeV/turn]	2.96

Permanent magnet (PM) based dipoles

Courtesy: H.S. Kang

PLS-II upgrade project: Overview

○ Main goals

- Beam energy : 2.5 \rightarrow 3.0 GeV
- Current : 200 \rightarrow 400 mA
- Storage Ring Emittance : 18.9 \rightarrow 5.8 nm
- Top-up Operation mode
- No. of Insertion Device : $10 \rightarrow 20$

O Important improvements

- In-vacuum undulator development
- PAL-DCM development
- New instrumentations: Libera BPM, etc.
- Superconducting RF system

PLS-II storage ring

Courtesy: H.S. Kang

- Beam Energy 3.0GeV
- Beam Current 400mA
- Lattice DBA
- Superperiods 12
- Emittance 5.8 nm·rad
- Tune 15.37 / 9.15
- RF Frequency 499.97 MHz
- Circumference 280 m

Australian Synchrotron

- User operations since 2007 with 9 beamlines.
- 100 MeV s-band linac and 3 GeV FODO lattice booster ring.
- 3 GeV double-bend storage ring.
- Current projects:
 - 2019 2021 NLK Injection Project (R. Auchettl, WEPM001)
 - Exploring Low-emittance machine upgrade.

Parameters	DBA		
E ₀	3 GeV		
Circumference	216 m		
Straight Lengths	4.6 m		
RF Frequency	499.677 MHz		
I ₀	200 mA		
Emittance	10.5 nm		
ID Beamsize (H/V)	320 / 16 um		
Dipole beamsize (H/V)	87 / 58 um		
1.0 keV Coh. Frac. Straight	0.02 %		
10.0 keV Coh. Frac. Straight	0.0003 %		
Courtesy: E.	Tan		

Australian Synchrotron

- Concept: THz FEL in Linac tunnel (R. Dowd)
 - Coherent Low Emittance Accelerator Radiation (CLEAR)
 - 20 MeV electrons, $\tau = 200$ fs, ~1 nC, >10 Hz rep-rate
 - Dipole CSR: up to 2 THz (60 cm⁻¹).
 - FEL: 40 to 400 cm⁻¹.
- Australian Accelerator Test Facility (AATF)
 - Bunker proposed to be built on site by 2022
 - Facilities to cater for research into for compact particle accelerators for the Australian community.

Courtesy: E. Tan

SSRF (Shanghai Synchrotron Research Facility)

SSRF: more beamlines

TPS Milestones

Aerial view of NSRRC campus

Operate two light sources simultaneously: TLS (1.5 GeV) and TPS (3 GeV)

- Increase stored beam current from 300 mA in 2016 to 400 mA in late 2017 in top-up operation. The 500 mA operation is scheduled.
- Construct 3rd SRF system (2018 ~ 2022) to accommodate more than 20 sets of insertion devices operated at 500 mA. Improve reliability under more comfortable operation conditions.
- ▶ Upgrade analogue LLRF to digital LLRF for booster and storage ring RF systems.
- Prepare 7 sets of IDs for Phase II beamlines (3 produced in-house, 2 CPMU co-developed with vendor, 2 procured from vendor).
- ➢ 7 Phase I beamlines and 3 Phase II beamlines available now. 3 Phase II beamlines will available in 2020.

Courtesy: K.T. Hsu

Concept of 3 GeV light source in Tohoku, Japan

- Highly brilliant compact Soft X-ray source with supreme stability and reliability
- SXFEL in future upgrade

Design strategy

- User oriented light source: not a test accelerator
- Design based on full-fledged accelerator technology developed at SPring-8/SACLA
- Short straight sections for MPW HX source
- Full energy injector linac for future SXFEL driver

Complementary partner of SPring-8

Target performance for SX (1 - 3 keV)

- Brilliance >10²¹ photons/sec/mm2/mrad2/0.1% b.w.
- Coherent ratio R ~ 10 %

➡

• I= 400 mA, ε= 1 nm.rad

Courtesy: N. Nishimori

Accelerator design

3 GeV accelerator

Injector linac 110 m

SX-FEL area for future upgrade

Storage ring parameters

Beam energy	3.0 GeV
Stored current	400 mA
Lattice	4B-achromat
Circumference	348.8 m
Number of cells	16
Natural emittance	1.1 nm.rad
Energy spread	0.084 %
Beam size σ _x / σ _y @ ST	121 / 5.8 μm

※ Coupling = 1 %

4 bend achromat lattice

Beam size at undulator

Courtesy: N. Nishimori

Storage ring development taking advantage of R&Ds for SPring-8-II

- Test half-cell constructed to study magnet performance and to establish precise alignment procedures
- Narrow-aperture vacuum chambers made of stainless steel
- HOM-damped TM020 RF cavity under high-power test
- Ring beam injection system with in-vacuum transparent off-axis scheme under development

3GeV storage ring unit cell (4 bend achromat lattice)

Injector linac development by technologies of SACLA for reliability and cost reduction

- C-band accelerator system (42MV/m) developed at SACLA with some modifications
- A new thermionic gun system for low cost and high reliability
- Future extension to SXFEL by gun replacement

A new gun system

Courtesy: Nobuyuki Nishimori

C-band accelerator at SACLA

3GeV linac parameters

Parameter		
Beam energy	E (GeV)	3
Normalized emittance	(µmrad)	<10
Emittance at 3 GeV	(nmrad)	<1.7
Bunch charge	(nC)	0.3
Repetition rate (Normal)	(Hz)	1

HEPS: Lattice design of storage ring & main parameters

HEPS: Key technologies developed in R&D

- CPMU, 166 MHz SRF cavity
- Digital BPM electronics, KB mirror system
- Fast kicker and power supply, high precision girder

Ground breaking next month!

SPS-II complex, Rayong, Thailand

SPS-II : storage ring lattice

DTBA lattice

- 14 DTBA cells (22.95 m/cell)
- Total circumference 321.3 m
- Total 28 straights:
 - 14 standard straights of 5.02 m
 - 14 middle straights of 3.10 m
- Utilize combined function dipoles (B3 and B4)

Double Triple Bend Achromat (DTBA) lattice (Modified 6BA)

SPS-II storage ring: Main parameters

Store beam energy	3.0 GeV	
Beam current	300 mA	
Emittance	0.96 nm-rad	
Lattice structure	DTBA	
Superperiods	14	
Circumference	321.3 m	
Radio frequency	500 MHz	
Long straight section length	5.02 m x 14	
Short straight section length	3.10 m x 14	
Number of cavities	6	
RF voltage	2.2 (3.6) MV	
Harmonic number	536	
Betatron tunes (v_x , v_y)	34.241, 12.310	
Chromaticities (ξ_x , ξ_y)	+2, +2	

SPS-II: full energy injector linac

SPS-II: main building and timeline

HALS (Hefei Advanced Light Source)

The High Gain Free Electron Lasers in Asia/Oceania

Facility	Location	e- Energy	Photon Energy	Status	Next
SCSS	Harima, Japan	0.3 GeV	Test bed at 10-25 eV	In SACLA	
SDUV	Shanghai, China	0.2 GeV	Test bed at 5 -10 eV	In SXFEL/LPA	
SACLA	Harima, Japan	8.0 GeV	BL2: 4-15 keV	Operation	More beamlines
			BL3: 4-15 keV	Operation	Injector for Spring-8
		0.8 GeV	BL1: 20-150 eV	Operation	
PAL-XFEL	Pohang, Korea	10.0 GeV	HX1: 2.0-14.5 keV	Operation	HX2
		3.0 GeV	SX1: 0.25-1.5 keV	Installation	Open to user in 2020
DCLS	Dalian, China	0.3 GeV	BL1: ~7-20 eV	Operation	cw VUV FEL R&D
			BL2: polar. control	Installation	Open 2020
SXFEL	Shanghai, China	0.84 GeV	~150 eV	lased	Merge to user facility
		~1.6 GeV	50 ~ 600 eV	Installation	Open to user in 2020
SHINE	Shanghai, China	8.0 GeV	FEL-I: 3-15 keV	Construction	8 years including R&D
			FEL-II: 0.4-3 keV		
			FEL-III: 10-25 keV		

FEL light sources in Asia: timelines and photon energy ranges-

SACLA + SPring-8

- The electron beam has been successfully injected to the SPring-8 storage ring.
- Long electron bunches are used to avoid CSR effects.
- Beam injection while keeping XFEL operation is the next step.

Si micro-channel-cut crystal

using 10 keV monochromatized SR.

Courtesy: H. Tanaka

(Talk by I. Inoue in IPAC2019)

PAL-XFEL

0.1 nm hard X-ray FEL using a 10 GeV normal conducting linac

The Distance of Light in

Apr. 2011:PAL-XFEL project startedJun. 2012:Ground-breakingDec. 2014:Building completedJan. 2016:Installation completedApr. 2016:Commissioning startedJun. 2017:User-service started

Profile Monitor HUIE:SCM36 16-Mar-2017 20:40: 3
2.5
0.1 nm fgg 1 1 1 1 1 1 1 1 1 2 3 14 Jun. 2016 First SASE lasing at 0.5 nm
 28 Oct. 2016 Lasing at 0.15 nm
 27 Nov. 2016 Saturation of 0.15 nm
 16 Mar. 2017 Saturation of 0.1 nm

PAL-XFEL Parameters

Courtesy: H.S. Kang

Klystron gallery

Linac tunnel

Hard X-ray experimental hall

Timing jitter between XFEL and optical laser: 18 fs

Stability for 14 minutes Statistics for 6000 XFEL shots (30 Hz) 100 OXC 100 50 $\delta \mathbf{t}_{\mathsf{OXC}}$ (fs) Time-zero position (fs) 0 00 0 -50 -100 0 1000 2000 3000 4000 5000 6000 Pulse Number at 30 Hz 3 6 9 12 450 BAM BAM 100 400 FWHM = 42 fs350 bin (rms = 18 fs)3 fs 300 250 200 200 150 0 -100 12 3 6 9 **Measurement time (min)** 100 BAM: Beam arrival monitor (Phase cavity) Access Door 1 Access Door 50 **XFEL** EH2 EH1 Optics 0 Beam -100 -50 0 50 100 Undulators UH OH Dump _ Access Door 2 Access Door 2 Arrival Time (fs) Beam dump Sliding Gate Door Courtesy: H.S. Kang best performance in the world

Dalian Coherent Light Source (DCLS)

- Tunable Wavelength: 50 150 nm
- Pulse Energy: >100 uJ (1 mJ)
- Pulse length: 100 fs /1 ps
- Bandwidth: Close to FT limit
- ➢ Jitter: <30 fs</p>
- Rep Rate: 50 Hz

Unique free electron laser laboratory opens in China

New device will probe smog and other gaseous phenomena

By Dennis Normile

hina is joining the elite club of countries that have built the poten free electron lasers (FELs) for their researchers. The Dalian Coherent Light Source, whose completion was

Science v355, issue 6322, p235(2017)

DCLS FEL Wavelength Tuning 50-150nm

ing in Europe, Japan, and the United States

Courtesy: X.M. Yang

DCLS layout

User experiment on DCLS

Photodissociation dynamics of water molecule is done above 120nm before DCLS. Now it is extended to 98nm. Three body dissociation is found, which is very rare and interesting case.

> J. Chem. Phys. 148. 124301(2018) Editor's Pick Rev. Sci. Intru. 89, 063113(2018) Nature Comm., 10, 1250(2019)

IR spectrum of Neutral cluster

By VUV soft ionizing, we succeed to measure IR spectrum of neutral cluster, which is hard without strong VUV photon beam. It is very important to obtain cluster structure.

> **Next:** high rep-rate FEL. R&D together with SHINE

SXFEL & SHINE

10PW-IR lasers

Soft XFEL 1.5GeV e- / ~1keV x-ray 532m, 2 FEL lines, 5 stations

3.5GeV Light Source

Hard XFEL 8 GeV linac, 0.4-25keV 3.1km, 3 FELs, 10 stations

SHINE

X-ray FEL Test Facility : 0.84GeV warm linac

SRF R&D for future XFELs

SXFEL user facility

Experiment Hall

Prototypes for SHINE accelerator

Cavity support

Cold mass

Tuner

BPM

First Cryostat delivered to Shanghai

SCQ

SSA

Undulator Layout and FEL Schemes

Three undulator beamlines to cover the photon energy range 0.4-25keV, external seeding and self-seeding schemes have been adopted for fully coherent FEL generation:

- FEL-I (3-15keV) : SASE 、self-seeding
- FEL-II (0.4-3keV) : EEHG/HGHG、self-seeding
- FEL-III (10-25keV) : SASE、self-seeding

SHINE undulators: SC/warm, HP/VP/Elliptical

	FEL-I	FEL-II	
Туре	Planar	Planar	Elliptical
Quantity	34	40	4
Period Length (mm)	26	68	68
Effective Length (m)	5	4	4
Minimum Gap (mm)	7	7	5
Maximum Peak Field (T)	1.0	1.5	1.5/1.5/1.06

Туре	Planar		
Quantity	40		
Period Length (mm)	16		
Effective Length (m)	4		
Minimum Gap (mm)	5		
Aperture (mm)	4		
Maximum Peak Field (T)	1.58		
Winding Material	NbTi/Cu		
Cooling	LHe conduction, 4.2-4.5 K		

Permanent magnet undulators

Superconducting undulator

Photon beamlines /end-stations

Synchrotron light source in Asia/Oceania

- 5 existing 3rd generation light source are running smoothly and adding more beamlines
- 2 low emittance rings just kick off around IPAC19
- A few new projects are on the horizon, as cornerstone for new research centers!
- Free Electron Laser in the region
 - FELs based on warm technology are mature. Multi-FELs operation are routine. More seeded FEL lines and other features.
 - Higher rep-rate XFELs ramp up in Asia.
 - New trend: synchrotron-XFEL combination from very beginning for greenfield projects, in Japan, China, Thailand and more...

President

Andrew Peele (Australia)

Vice President

General

Secretary

Zhentang Zhao Tapas Ganguli (China) (India)

Don Smith

(New Zealand)

Sujitjorn

(Thailand)

Representatives

Kosugi

(Japan)

In Soo Ko (Korea)

Tran Duc Thiep (Vietnam)

Open

(Malaysia)

Yoshihisa Harada

Richard Garrett

AOFSRR 2018 AOE Council Members

A new consortium of excellence in Europe devising a transformative level of coordination and integration

Courtesy: T. Ishikawa Asia/Oceania accelerator-based photon source community has been growing steadily and rapidly. Need for establishing Asia/Oceania consortium of photon sources like LEAPS for Europe.

A new consortium of excellence in Europe devising a transformative level of coordination and integration

Courtesy: T. Ishikawa

Thank you for your attention!

www.ipac22.org