Application of Phase Space Beam Position and Size Monitor for Synchrotron Radiation

Nazanin Samadi
PhD Candidate
University of Saskatchewan
Canadian Light Source

IPAC19, 24 May 2019
Contributors

Dean Chapman
Canadian Light Source
University of Saskatchewan

Xianbo Shi
Advanced Photon Source

Les Dallin
Canadian Light Source

Acknowledgment

George Belev
CLS Machine
Mark Boland
Ward Wurtz
Bud Fugal
CLS Beamline
Denise Miller
Adam Webb
Arash Panahifar

Rob Lamb
APS Machine
Louis Emery
Vadim Sajaev
Nick Sereno
APS Beamline
Lahsen Assoufid
Albert Macrander
Plan

- Motivation
- The system
- Results
- Optimization
 - APS-U simulations
- Conclusion
- References
Motivation: Source monitoring & Data Correction

- New generation light sources with small emittance
- MBA Lattice

 \[\varepsilon \propto \frac{E^2}{(N_s N_d)^3} \]

 \[\varepsilon_y \propto \sigma_y \sigma_y \]

 Ns: # sectors in the ring
 Nd: # dipoles/sector

- Beam stability and source size measurements challenging and important.
Double Crystal Monochromator

Double Crystal Monochromator (DCM), Creates a nearly monochromatic beam

\[\theta_k \]
DCM @ K-edge Absorption

Some of the beam above and some of the beam below the edge energy
What the Beam Looks Like?

<table>
<thead>
<tr>
<th>y & y'</th>
<th>What the beam looks like</th>
<th>Beam</th>
<th>Edge</th>
</tr>
</thead>
<tbody>
<tr>
<td>y=0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>y'=0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
What Happens When the Beam Moves?

<table>
<thead>
<tr>
<th>$y & y'$</th>
<th>What the beam looks like</th>
<th>Beam</th>
<th>Edge</th>
</tr>
</thead>
<tbody>
<tr>
<td>$y=0$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$y'=0$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$y>0$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$y'=0$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$y=0$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$y'>0$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$y>0$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$y'>0$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The System - Extracting Information

\[-\ln \Rightarrow \frac{d}{dy} \Rightarrow \sigma_{\text{edge}}\]

\[\gamma_{\text{beam}} \Rightarrow \sigma_{\text{beam}} \Rightarrow \gamma_{\text{edge}}\]
Source position and angle

Beam Side – no filter

\[y_{\text{beam}} = y + Dy' \]

Edge Side – contrast filter

\[y_{\text{edge}} = y \]

\[y = y_{\text{edge}} \quad \& \quad y' = \frac{y_{\text{beam}} - y_{\text{edge}}}{D} \]
Moving the Electron Beam **Position** (mostly)

Position

<table>
<thead>
<tr>
<th>BPM Value</th>
<th>Beam Position y (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-60</td>
<td>-150</td>
</tr>
<tr>
<td>-40</td>
<td>-100</td>
</tr>
<tr>
<td>-20</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td>20</td>
<td>100</td>
</tr>
<tr>
<td>40</td>
<td>150</td>
</tr>
<tr>
<td>60</td>
<td>+ photon beam position</td>
</tr>
</tbody>
</table>

- least squares fit

Theory

Slope = 1.807 µm/BPM Value

Angle

<table>
<thead>
<tr>
<th>BPM Value</th>
<th>Beam Angle y (µradians)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-60</td>
<td>-150</td>
</tr>
<tr>
<td>-40</td>
<td>-100</td>
</tr>
<tr>
<td>-20</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td>20</td>
<td>100</td>
</tr>
<tr>
<td>40</td>
<td>150</td>
</tr>
<tr>
<td>60</td>
<td>+ photon beam position</td>
</tr>
</tbody>
</table>

- least squares fit

Theory

Slope = 0.0301 µradians/BPM Value

Measurements made while the beam stability was improved
Correcting Experimental Data

Measurements made while a beam motion with 10 Hz frequency and different amplitudes was put in the ring.

The Dashed line show the predicted value based on a machine optics simulation.

The System - Extracting Size Information

\[-\ln\]
\[\frac{d}{dy}\]
\[\sigma_{\text{edge}}\]
\[\gamma_{\text{beam}}\]
\[\sigma_{\text{beam}}\]
Beam size and Divergence - Emittance

The Vertical Emittance Comes from the Widths

Contributions to the K-Edge Width

\[\sigma_{beam}^2 = (D \sigma_{\text{y}'_{\text{res}}})^2 + \sigma_{\text{y}'_{\text{source}}}^2 + (D \sigma_{\text{y}'_{\text{mono}}})^2 \]

What we measure

Contributions to the Unfiltered Beam Width

\[\sigma_{edge}^2 = \sigma_{\text{y}'_{\text{source}}}^2 + (D \sigma_{\text{y}'_{\text{edge}}})^2 \]

What we want

What we need to figure out
Measurements of Emittance

\[\sigma_y = \sqrt{\sigma_{edge}^2 - (D \sigma_{y'_{K-edge}})^2 - (D \sigma_{y'_{mono}})^2} \]

\[\sigma_{y'} = \frac{1}{D} \sqrt{\sigma_{beam}^2 - \sigma_y^2 - (D \sigma_{y'_{Ph}})^2} \]

\[\mathcal{E}_y \propto \sigma_y \sigma_{y'} \]
Changing the Electron beam Size (mostly)

![Graph showing the relationship between XSR σ_y and BMIT σ_y](chart.png)

Slope = 1.13 ± 0.04
Ps-BPM Outputs

\[\gamma \]
\[Dy' \]

\[\gamma \]
\[Dy' \]

Power spectrum

\[\sigma_y \]
\[D\sigma_y \]

Power spectrum

Optimization Process

- The monochromator
 - crystal material
 - reflection geometry
 - choice of lattice planes

- The K-edge filter
 - sets the energy
 - the K-edge width
 - the concentration and thickness of the filter element

- The system geometry and
 - the only relevant distance is the source to the detector distance.

- The detector
 - pixel size in the diffraction plane

Ray-Tracing and Modelling

Simulations done in ShadowOui package in the OASYS environment

The nominal electron beam size: $\sigma_{\text{source}} = 4.9 \ \mu\text{m}$ and $\sigma'_{\text{source}} = 2.8 \ \mu\text{rad}$.

APS-U BM source

APS-U source with zero-emittance

Example of ps-BPM for APS-U Source

- APS-U
- Si (111)
- Single Bragg
- Barium K-edge
- 37.441 keV
- 10 m from the source
- 10 μm detector

Conclusion

- **Beamline**
 - BPM
 - Correcting Experimental Data

- **Machine**
 - BPM
 - Control and Feedback System
 - Emittance Measurements

- Real-time capability of beam position and size monitoring
- The data can be used for both source and beamline diagnostics
- The system has the sensitivity to be used at small-emittance sources.
Reference

Thank you!

Questions?