

Operational Experience of SNS at 1.4 MW and Upgrade Plans for Doubling the Beam Power

John Galambos Director Proton Power Upgrade project On behalf of the SNS staff

IPAC 2019 May 25, 2019, Melbourne Australia

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Outline

- Spallation Neutron Source (SNS) introduction
- We are at the design 1.4 MW power level operation
- The Proton Power Upgrade (PPU) project
 - Double the accelerator power capability to 2.8 MW

Upgrades build on experience that paved the way to 1.4 MW operation

Spallation Neutron Source (SNS): A high intensity short pulse spallation neutron source

- Spallation: accelerator driven, protons
- High intensity neutron: MW
 power level accelerator
- Short pulse: ring

SNS overview: short pulse neutron source

The accumulator ring compresses the pulse to ~700 nsec

@ 60 Hz, this represents a 1.4 MW proton beam power

The early operation years: 2007-2011 "Race to 1 MW"

Beam Power - Accumulated Energy

- Ramp up as fast as possible, see what breaks and fix it
 - Limitations: high power RF, ion source, superconducting RF

Actional Laboratory

5

PPU Overview March 19 2019

Technology initiatives launched in the early years

lon source

• World class high current and repeatable performance has been developed

High voltage convertor modulators

 Component and system robustness

Superconducting RF

- Cryomodule rework: remove un-necessary ancillary equipment (piezo tuners, HOMs)
- Equipment protection: fast beam turn-off with beam loss
- Improve performance: in-situ plasma processing

Intermediate years 2012-2016: "It's the target stupid"

- Target failures limited beam power
 - 6 of 8 targets leaked during this period

Target improvement campaign

Gas bubble injection into mercury target

Target instrumentation: strain gauges

Post Irradiation Examination

CAK RIDGE HIGH FLUX National Laboratory REACTOR SOURCE PPU Overview March 19 2019

Gas bubble injection in targets demonstrates strain mitigation

Measurements show clear target vessel strain reductions with gas bubble injection

• Demonstrates strain reduction required for PPU 2 MW design

Actional Laboratory

Gas bubble injection in targets demonstrates cavitation mitigation

Last 8 operational targets: no leaks

New RFQ provides beam current (power) headroom

Original RFQ had performance issues

- Original RFQ had performance issues
 - Sudden frequency shifts
 - Gradual field profile change
 - Transmission reduced ~ 20-30%

Upstream view of the original SNS RFQ vanes

New RFQ installed in 2018

Recovered 90% design transmission
 which provides power margin

2016-2019: "Systematic approach" to 1.4 MW design level

SNS is operating at its design power of 1.4 MW

- New RFQ provides beam power headroom
- Gas injection mitigates
 target damage
 - No mercury leaks
- Developments in other accelerator systems provide a basis for reliable high power operation.

Operation at 1.4 MW

- Trip frequency is not affected by beam power
 - Reliability dominated by infrequent but long outages

- Beam loss is proportional to beam power
 - Activation levels have never limited beam power
- Operational rhythm is much the same as before

SNS operation metric history

SNS beam power summary

Actional Laboratory

SNS Upgrade Plans

PPU parameters

	SNS 1.4 MW	PPU full upgrade capability	PPU FTS 60 Hz operation	
Proton beam power capability (MW)	1.4	2.8	2.0	
Beam energy (GeV)	1.0	1.3	1.3	33% energy increase
RFQ output peak beam current (mA)	33	46	46	
Average linac chopping fraction (%)	22	18	41	
Average macropulse beam current (mA)	25	38	27	50% current increase: front end is good to go
Energy per pulse (kJ)	23	47	33	
Pulse repetition rate (Hz)	60	60	60	── No change
Macro-pulse length (ms)	1	1	1	
FTS decoupled moderator brightness/pulse (AU)	1	2.04	1.43	
FTS coupled moderator brightness/pulse (AU)	1	2.16	1.51	

Superconducting linac (SCL): 7 new cryomodules

Cavities

- Cavities are presently being procured
 - Similar as existing cavities
 - 16 MV/m gradient, $Q_0 > 5x10^9$

Cryomodules

- JLab is a PPU partner and is providing the cryomodules
 - Similar to existing SNS spare cryomodule

9 empty slots are available in the tunnel

Radio frequency upgrades

Upgrade some existing RF installations

- Tests done on existing systems
 - CCL and existing SCL RF systems: OK
 - DTL systems: upgrade from 2.5 to 3 MW

DTL RF system

Testing RF

New equipment to power the new cryomodules

- High voltage convertor modulators use new topology
- Klystrons will be same as presently in use

AT HVCM undergoing heat test

SCL klystrons

Accumulator ring upgrades

Injection magnets

• Some chicane magnets need replacement

Partnering with FNAL

Extraction region

• Extraction kickers: upgrade existing power supplies rather than add new kickers

96% of magnets and power supplies are 1.3 GeV capable now

Target upgrades

New 2 MW mercury target vessel

- Enhanced structural design
- Enhanced gas bubble injection
 - 10x increase flow rate
- Gas wall in nose

Other target systems

- Recirculating injected He gas in service bay
- Ensuring 2MW capable systems

Conventional facility upgrades

Klystron gallery buildout

Coupled CF / technical systems 3-D layout to facilitate installation

Tunnel stub to Second Target Station (STS)

• Facilitates seamless tie-in to STS

PPU is partnering with other laboratories

J-Lab is building the new superconducting cryomodules

• J-Lab built the original SNS cryomodules, has the resources and facilities for this task

FNAL: Ring magnet scope

FNAL chicane magnet design

LBNL: LLRF

23

PPU Overview March 19 2019

Power upgrade project timeline

- Aggressively pursuing "early procurements" to accelerate schedule
 CD-3a, CD-3b
- Plan a power ramp-up starting in 2022
- Early finish in 2024

Summary

- SNS has reached its design operational power of 1.4 MW
 - Builds on many years of development
 - Target and RFQ improvements are most recent steps forward
- An accelerator upgrade project (PPU) is underway to double the power capability
 - Largely based on existing accelerator technology
 - Partnering with other labs to leverage fabrication capabilities

