Paper |
Title |
Page |
MOPTS075 |
Design and Experiment of a Window-Type CW Deuteron RFQ |
1021 |
|
- K. Zhu, M.J. Easton, P.P. Gan, S.L. Gao, H.P. Li, S. Liu, Y.R. Lu, Q.Y. Tan, L. Tao, Z. Wang
PKU, Beijing, People’s Republic of China
- W.P. Dou, Y. He, C. Wang, Q. Wu, H.W. Zhao
IMP/CAS, Lanzhou, People’s Republic of China
|
|
|
A deutron CW RFQ was designed and fabricated in Peking University. It will accelerate 50mA CW deutron beam from 50keV to 1MeV at 162.5MHz. The novel structure of four-vane with window was used to seperate the dipole mode from the working mode. The field tuning of this RFQ was different from conventional four vane RFQ because that the four quadrants of RFQ cavity were coupled. The discipline of field tuning was studied by simulation and experiment. The beam dynamics of the RFQ was designed by equipartation and matching method, limit current effect was considered at the same time. The final design result of the RFQ was: voltage between electrodes was 60kV, transport efficiency of RFQ is 98%, field unflatness is less than 2% after tuning, the deformation of RFQcavity is less than 80um. Only 47 hours was spent to increase CW power of cavity from 0 to 55kW in high power test and The RFQ can working stable at the design voltage. The preliminary H2+ beam exeperiment has been done and 1.78mA CW beam was obtained at exit of RFQ. This paper will introduce the detail of design and experiment of the RFQ.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS075
|
|
About • |
paper received ※ 22 May 2019 paper accepted ※ 24 May 2019 issue date ※ 21 June 2019 |
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
THPGW042 |
Applications of Compact Laser Plasma Accelerator (CLAPA) Beamline in Peking University |
3676 |
SUSPFO059 |
|
|
- D.Y. Li, J.E. Chen, Y.X. Geng, X.Y. Hu, C.C. Li, Q. Liao, C. Lin, H.Y. Lu, W.J. Ma, M.J. Wu, X.H. Xu, X.Q. Yan, T. Yang, Y.Y. Zhao, J.G. Zhu, K. Zhu
PKU, Beijing, People’s Republic of China
|
|
|
Proton beam with energies less than 10 MeV, <1% energy spread, several to tens of pC charge can be stably produced and transported in Compact LAser Plasma Accelerator (CLAPA) at Peking University. The CLAPA beam line is an object-image point analysing system, which ensures the transmission efficiency and energy selection accuracy for proton beams with initial large divergence angle and energy spread. A spread-out Bragg peak (SOBP) is produced with high precision beam control, which is essential for cancer therapy. Other primary application experiments based on laser-accelerated proton beam have also been carried out, such as proton radiograph, stress testing for tungsten, irradiation of semi-conductor sensor to simulate the space irradiation environment and so on.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2019-THPGW042
|
|
About • |
paper received ※ 15 May 2019 paper accepted ※ 21 May 2019 issue date ※ 21 June 2019 |
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|