Author: Zhao, H.
Paper Title Page
MOPRB085 First Results from Commissioning of Low Energy RHIC Electron Cooler (LEReC) 769
 
  • D. Kayran, Z. Altinbas, D. Bruno, M.R. Costanzo, K.A. Drees, A.V. Fedotov, W. Fischer, M. Gaowei, D.M. Gassner, X. Gu, R.L. Hulsart, P. Inacker, J.P. Jamilkowski, Y.C. Jing, J. Kewisch, C.J. Liaw, C. Liu, J. Ma, K. Mernick, T.A. Miller, M.G. Minty, L.K. Nguyen, M.C. Paniccia, I. Pinayev, V. Ptitsyn, V. Schoefer, S. Seletskiy, F. Severino, T.C. Shrey, L. Smart, K.S. Smith, A. Sukhanov, P. Thieberger, J.E. Tuozzolo, E. Wang, G. Wang, A. Zaltsman, H. Zhao, Z. Zhao
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
The brand new non-magnetized bunched beam electron cooler (LEReC) [1] has been built to provide luminosity improvement for Beam Energy Scan II (BES-II) physics program at the Relativistic Heavy Ion Collider (RHIC) BES-II [2]. The LEReC accelerator includes a photocathode DC gun, a laser system, a photocathode delivery system, magnets, beam diagnostics, a SRF booster cavity, and a set of Normal Conducting RF cavities to provide sufficient flexibility to tune the beam in the longitudinal phase space. This high-current high-power accelerator was successfully commissioned in period of March -September 2018. Beam quality suitable for cooling has been demonstrated. In this paper we discuss beam commissioning results and experience learned during commissioning.
[1] A. Fedotov et al., ’Status of bunched beam electron cooler LEReC’ in these proceedings.
[2] C.Liu et al., ’Improving luminosity of Beam Energy Scan II at RHIC’ in these proceedings.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPRB085  
About • paper received ※ 15 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THXXPLM3
Experimental and Simulation Studies of Cooling of a Bunched Ion Beam in a Storage Ring by a Bunched Electron Beam  
 
  • Y. Zhang, S.V. Benson, A. Hutton, K. Jordan, T. Powers, R.A. Rimmer, M.F. Spata, A.V. Sy, H. Wang, S. Wang, H. Zhang
    JLab, Newport News, Virginia, USA
  • J. Li, X.M. Ma, L.J. Mao, M.T. Tang, J.C. Yang, X.D. Yang, H. Zhao, H.W. Zhao
    IMP/CAS, Lanzhou, People’s Republic of China
 
  Cooling of a high energy ion beam is essential for future electron-ion colliders to reach high luminosity. It is critical to demonstrate experimentally cooling by a bunched electron beam and to benchmark the experimental data with simulations. Such experimental and simulation studies were carried out by a collaboration of Jefferson Lab and Institute of Modern Physics (IMP), utilizing a DC cooler at IMP. The thermionic gun of the DC cooler was modified by pulsing its grid voltage to produce cooling electron pulses in a pulse length range of 0.07 - 3.5 µs, with a 250 kHZ repetition frequency. The performed experiments clearly demonstrated cooling of a RF focused ion bunches by this pulsed electron beam. The momentum spread of cooled ion bunch has been reduced from ~2x10-3 to ~6x10-4 in less than 0.5 second. The simulation results agree with the measurements qualitatively. In this paper, we present a brief overview of the experiments and also show the main experimental and simulation results.  
slides icon Slides THXXPLM3 [6.436 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)