Paper | Title | Page |
---|---|---|
MOZZPLS1 | eRHIC Design Overview | 45 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. The Electron-Ion Collider (EIC) is being envisioned as the next facility to be constructed by the DOE Nuclear Physics program. Brookhaven National Laboratory is proposing eRHIC, a facility based on the existing RHIC complex as a cost effective realization of the EIC project with a peak luminosity of 1034 cm-2 sec-1. An electron storage ring with an energy range from 5 to 18 GeV will be added in the existing RHIC tunnel. A spin-transparent rapid-cycling synchrotron (RCS) will serve as a full-energy polarized electron injector. Recent design improvements include reduction of the IR magnet strengths to avoid the necessity for Nb3Sn magnets, and a novel hadron injection scheme to maximize the integrated luminosity. We will provide an overview of this proposed project and present the current design status. |
||
![]() |
Slides MOZZPLS1 [5.428 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOZZPLS1 | |
About • | paper received ※ 14 May 2019 paper accepted ※ 20 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPMP044 | Improving the Luminosity for Beam Energy Scan II at RHIC | 540 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. The QCD (Quantum Chromodynamics) phase diagram has many uncharted territories, particularly the nature of the transformation from Quark-Gluon plasma (QGP) to the state of Hadronic gas. The Beam Energy Scan I (BES-I) at the Relativistic Heavy Ion Collider (RHIC) was completed but measurements had large statistical errors. To improve the statistical error and expand the search for first-order phase transition and location of the critical point, Beam Energy Scan II will commence in 2019 with a goal of improving the luminosity by a factor of 3-4. The beam lifetime at low energies was and will be limited by some physical effects of which the most significant are intrabeam scattering, space charge, beam-beam, persistent current effects. This article will review these potential limiting factors and introduce the countermeasures which will be in place to improve BES-II luminosity. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPMP044 | |
About • | paper received ※ 14 May 2019 paper accepted ※ 20 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPMP052 | Proposed Hadron Injection into the Future eRHIC Collider | 2451 |
|
||
Funding: *Work Supported by the US Department of Energy. The future eRHIC collider * will collide 5, 10, and 18 GeV polarized electrons with 250 GeV polarized protons, 210 GeV/u polarized 3He ions and other heavy ion species which are already produced by the RHIC accelerator. To increase the luminosity during collisions the number of circulating hadron bunches will increase to 330 and this requires a modification of the injection hadrons into the RHIC accelerator. This paper describes this injection scheme which is compatible with a design option which uses two hadron rings, one ring for accelerating the hadron beam and the other ring for storing the circulating beam to increase even further the integrated luminosity of the electron-hadron collisions. This two-hadron-rings option will be presented in the conference. tsoupas@bnl.gov * ICFA BD Newsletter No. 74 http://icfa-bd.kek.jp/ |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPMP052 | |
About • | paper received ※ 15 May 2019 paper accepted ※ 20 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |