Author: Zhang, C.
Paper Title Page
THPTS024 Magnet Developments and Precise Alignment Schemes for SPring-8-II 4158
 
  • K. Fukami, T. Aoki, N. Azumi, H. Kimura, S. Matsubara, S. Takano, T. Taniuchi, T. Watanabe, K. Yanagida, C. Zhang
    JASRI, Hyogo, Japan
  • N. Azumi, K. Fukami, H. Kimura, S. Matsui, S. Takano, T. Watanabe
    RIKEN SPring-8 Center, Hyogo, Japan
  • S.I. Inoue, T. Kai, J. Kiuchi
    SES, Hyogo-pref., Japan
 
  The magnet lattice design of the SPring-8 upgrade, SPring-8-II, is a five bend achromat composed of one normal and four longitudinal gradient bending magnets. Permanent magnet has been chosen for both types of the dipoles, and the high gradient multipole magnets are all electromagnets. This presentation will overview the magnet developments and precise alignment schemes for SPring-8-II, focusing specifically on the following features. Temperature insensitive magnetic circuits with a function of fine magnetic field tuning have been developed for the permanent magnet dipoles. Narrow bore multipole magnets with compact coil assemblies have been designed. We optimized the shimming for enough good field regions, and minimized ohmic loss at the coils for suppressing thermal deformation. To improve the accuracy of vibrating wire magnet alignment, practical wire sag distributions have been quantitatively evaluated. In 2018, a test half-cell was constructed by which the feasibilities of the magnets and the overall alignment precisions including the effects of the thermal deformation of magnets, a repeatability of magnet reassembly has been confirmed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS024  
About • paper received ※ 10 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)