Paper |
Title |
Page |
MOPTS089 |
Transverse Beam Dynamics Studies With High Intensity LHC Beams in the SPS |
1062 |
|
- M. Carlà, H. Bartosik, M.S. Beck, L.R. Carver, V. Kain, G. Kotzian, K.S.B. Li, G. Rumolo, C. Zannini
CERN, Geneva, Switzerland
|
|
|
In order to reach the target beam parameters of the LHC injectors upgrade (LIU), about twice the presently operational intensity of LHC type beams has to be achieved. Although the planned upgrade of the main RF system will occur during the long shutdown, a series of measurements have been performed to assess the beam dynamics challenges with these very high intensity beams on the long SPS injection plateau. Bunch-by-bunch transverse emittance blow-up measurements suggested the presence of electron-cloud. After a period of running with the high intensity beam for a couple of days, a clear improvement of beam quality was observed which is attributed to scrubbing. In addition, a horizontal headtail instability is encountered for the usual operational settings of chromaticity and transverse damper. The stability limit as a function of chromaticity and Landau octupole settings has been explored and will be discussed, together with possible sources of the instability and mitigation strategies.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS089
|
|
About • |
paper received ※ 06 May 2019 paper accepted ※ 18 May 2019 issue date ※ 21 June 2019 |
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
WEYPLS1 |
Building the Impedance Model of a Real Machine |
2249 |
|
- B. Salvant, D. Amorim, S.A. Antipov, S. Arsenyev, M.S. Beck, N. Biancacci, O.S. Brüning, J.V. Campelo, E. Carideo, F. Caspers, A. Farricker, A. Grudiev, T. Kaltenbacher, E. Koukovini-Platia, P. Kramer, A. Lasheen, M. Migliorati, N. Mounet, E. Métral, N. Nasr Esfahani, S. Persichelli, B.K. Popovic, T.L. Rijoff, G. Rumolo, E.N. Shaposhnikova, V.G. Vaccaro, C. Vollinger, N. Wang, C. Zannini, B. Zotter
CERN, Meyrin, Switzerland
- D. Amorim
Grenoble-INP Phelma, Grenoble, France
- T. Dalascu
EPFL, Lausanne, Switzerland
- M. Migliorati
Sapienza University of Rome, Rome, Italy
- R. Nagaoka
SOLEIL, Gif-sur-Yvette, France
- V.V. Smaluk
BNL, Upton, Long Island, New York, USA
- B. Spataro
INFN/LNF, Frascati, Italy
- N. Wang
IHEP, Beijing, People’s Republic of China
- S.M. White
ESRF, Grenoble, France
|
|
|
A reliable impedance model of a particle accelerator can be built by combining the beam coupling impedances of all the components. This is a necessary step to be able to evaluate the machine performance limitations, identify the main contributors in case an impedance reduction is required, and study the interaction with other mechanisms such as optics nonlinearities, transverse damper, noise, space charge, electron cloud, beam-beam (in a collider). The main phases to create a realistic impedance model, and verify it experimentally, will be reviewed, highlighting the main challenges. Some examples will be presented revealing the levels of precision of machine impedance models that have been achieved.
|
|
|
Slides WEYPLS1 [5.648 MB]
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2019-WEYPLS1
|
|
About • |
paper received ※ 10 May 2019 paper accepted ※ 23 May 2019 issue date ※ 21 June 2019 |
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|