Author: Yu, L.-H.
Paper Title Page
WEPGW114 Interferometric Measurement of Bunch Length of a 3Mev Picocoulomb Electron Beam 2766
 
  • X. Yang, M. Babzien, B. Bacha, G.L. Carr, W.X. Cheng, L. Doom, M.G. Fedurin, B.N. Kosciuk, J.J. Li, D. Padrazo Jr, T.V. Shaftan, V.V. Smaluk, C. Swinson, L.-H. Yu, Y. Zhu
    BNL, Upton, Long Island, New York, USA
 
  Funding: BNL LDRD
We report the bunch length measurement of low-energy 3 MeV electron beams in picosecond regime with the charge from 1.0 to 14 pC. It is the first time that we demonstrate single-cycle nano-joule coherent terahertz (THz) radiation from 3MeV electron beam can be meas-ured via a far-infrared Michelson interferometer using a QOD. At this low energy range, when charge is about 1 pC, the signal from the conventional helium-cooled sili-con composite bolometer is too low. Compared to the bunch length measurement via the ultrafast-laser-pump and electron-beam-probe in the timescale 10-14 to 10-12 s which is determined by the phase-transition dynamics in solids, the advantages are: there are no needs of pump laser and probe sample, greatly simplifying the experi-ment; the timing jitter between laser and electron beams contributes no error to the bunch length measurement; furthermore, the method can be extended to sub-picosecond regime enabling bunch length measurement in a much broader timescale 10-14 to 10-11 s for low-energy electron beams. In the current experiment the bunch length is limited to 1 ps only because the setup of driving laser to cathode with a large 70° incident angle, effective-ly lengthening the laser pulse to ≥1 ps.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPGW114  
About • paper received ※ 14 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMP053 Tuning Quadrupoles for Brighter and Sharper Ultra-fast Electron Diffraction Imaging 3571
 
  • X. Yang, L. Doom, M.G. Fedurin, Y. Hidaka, J.J. Li, D. Padrazo Jr, T.V. Shaftan, V.V. Smaluk, G.M. Wang, L.-H. Yu, Y. Zhu
    BNL, Upton, Long Island, New York, USA
  • W. Wan
    ShanghaiTech University, Shanghai, People’s Republic of China
 
  Funding: BNL LDRD
We report our proof-of-principle design and experi-mental commissioning of broadly tunable and low-cost transverse focusing lens system for MeV-energy electron beams at the ultra-fast electron diffraction (UED) beam-line of the Accelerator Test Facility II of BNL. We exper-imentally demonstrate the independent control over the size and divergence of the electron beam at the sample via tunable quadrupoles. By applying online optimiza-tion, we achieve minimum beam sizes 75 µm from 1 to 13 pC, two orders of magnitude higher charge density than previously achieved using conventional solenoid tech-nique. Finally, we experimentally demonstrate Bragg-diffraction image (BDI) with significant improvement up to 3 times brighter and 2 times sharper BDI peaks via the optimized quadrupoles, improvement larger with higher charge. The result could be crucial for the future single-shot ultra-fast electron microscope development.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPMP053  
About • paper received ※ 14 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)