Paper | Title | Page |
---|---|---|
MOPTS068 | Beam Commissioning Experience of CSNS/RCS | 1012 |
|
||
The China Spallation Neutron Source (CSNS) is an accelerator-based science facility. CSNS is designed to accelerate proton beam pulses to 1.6 GeV kinetic energy, striking a solid metal target to produce spallation neutrons. CSNS has two major accelerator systems, a linear accelerator (80 MeV Linac) and a 1.6 GeV rapid cycling synchrotron (RCS). The Beam commissioning of CSNS/RCS has been commissioned recently. Beam had been accelerated to 1.6 GeV at CSNS/RCS on January 18, 2018 with the injection energy of 80 MeV. The machine parameters are measured and optimized. The beam power is increased step by step. The beam power achieved 50kW in January, 2019. In this paper, the commissioning experiences are introduced. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS068 | |
About • | paper received ※ 15 May 2019 paper accepted ※ 20 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPTS029 | The Synchronization between BPMs and Corrector Power Supplies in AC Mode of RCS of CSNS | 3164 |
|
||
This paper introduces our effort for synchronizing BPMs and Corrector Power Supplies in AC mode of RCS of CSNS. This work helps to increase the accuracy of the response matrix measurement, the obit correction, and other commissioning task. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPTS029 | |
About • | paper received ※ 15 May 2019 paper accepted ※ 22 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPRB028 | Application of WCM in Beam Commissioning of RCS in CSNS | 636 |
|
||
Wall Current Monitor (WCM) is the only beam instru-ment in RCS of CSNS. It is utilized to derive many kinds of physics parameters during beam commissioning. The longitudinal phase distribution of the bunch over the boosting time is deduced for our future analyzation. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPRB028 | |
About • | paper received ※ 15 May 2019 paper accepted ※ 20 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPRB029 | Longitudinal Tomography for Analysing the Longitudinal Phase Space Distribution in RCS of CSNS | 639 |
|
||
It is proved that in the beam commissioning of the RCS of CSNS, the longitudinal optimization is vital for the promotion of the beam power. The WCM is the only beam instrument for the measurement of the longitudinal parameters. It is important for us to deduce the longitudi-nal phase space distribution, using the WCM data. The longitudinal tomography is applied, and some satisfying results have been obtained. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPRB029 | |
About • | paper received ※ 15 May 2019 paper accepted ※ 20 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPTS048 | Preliminary Study on the Injection System Upgrade for CSNS-II | 2037 |
|
||
Funding: Work supported by National Natural Science Foundation of China (Project No. U1832210) The first phase of the China Spallation Neutron Source (CSNS-I) had completed the national acceptance in August, 2018. The physics design of the second phase (CSNS-II) has already begun. The CSNS-II accelerator upgrade contains three main components, including the Linac energy upgrade from 80 MeV to 300 MeV, injection system upgrade, and new Magnetic Alloy dual-harmonic cavity. In this paper, a preliminary study on the injection system upgrade had been done. A preliminary upgrade scheme for the injection system would be given. Furthermore, some preliminary simulation and calculation for the upgrade injection system had been carried out. The analysis results showed that most injection parameters can preliminarily meet the requirements of accelerator power upgrade. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPTS048 | |
About • | paper received ※ 15 May 2019 paper accepted ※ 23 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPMP011 | Residual Orbits Estimation of the Injection Painting Bumps for CSNS | 2326 |
|
||
Funding: Work supported by National Natural Science Foundation of China (Project No. U1832210) There are three bumps (one chicane bump and two painting bumps) in the injection system of the China Spallation Neutron Source (CSNS). They are the core parts of the injection system and the important guarantee that the Linac beam injecting into the rapid cycling synchrotron (RCS). During the beam commissioning, to check the effect of the residual orbits of the three bumps in the injection region was an important problem. In this paper, the residual orbits of BH and BV painting bumps were studied and estimated in the beam commissioning. The data analysis results showed that the residual orbits of BH and BV painting bumps were very small and they didn’t need to be corrected. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPMP011 | |
About • | paper received ※ 01 May 2019 paper accepted ※ 20 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPMP012 | Beam Loss and the Stripping Efficiency Measurement for CSNS Injection System | 2329 |
|
||
Funding: Work supported by National Natural Science Foundation of China (Project No. U1832210) The injection beam loss is the main beam loss of the rapid cycling synchrotron (RCS) for the China Spallation Neutron Source (CSNS). After the optimization of injection system during the beam commissioning, the current injection beam loss for CSNS/RCS is approximately 1%. There are several sources of injection beam loss. In order to distinguish these different sources, the stripping efficiency of the main stripping foil should be studied and measured accurately. In this paper, a scheme for the accurate measurement of the stripping efficiency for CSNS will be proposed and studied. It can not only reduce the injection beam loss, but also be used to estimate the operation state and lifespan of the main stripping foil accurately. This method will be applied in future beam commissioning. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPMP012 | |
About • | paper received ※ 30 April 2019 paper accepted ※ 21 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPGW059 | A Preliminary Feasibility Study of Measurement of Quadrupolar Beam Oscillations at CSNS RCS | 2611 |
|
||
In high intensity proton synchrotrons, linear and nonlinear betatron resonances cause beam loss. When the betatron tune spreads over a resonance line, the betatron oscillation amplitude will get larger, causing large beam loss. In the quadrupolar beam transfer function, the coherent space-charge tune shift of quadrupolar beam oscillations is used to determine the incoherent tune shift. China Spallation Neutron Source (CSNS) is a high intensity accelerator based facility consists of linear accelerator and the Rapid Cycle Synchrotron (RCS). A system of quadrupolar pick-up and kicker can be used for evaluating tune shifts and spreads. This paper will present already existing beam diagnostic instrumentation on CSNS/RCS, and discuss feasibility study of measurement of quadrupolar beam oscillations through adding a quadrupolar-type beam pick-up. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPGW059 | |
About • | paper received ※ 15 May 2019 paper accepted ※ 21 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |