Author: Wu, J.
Paper Title Page
TUPRB062 Coherence Time Characterization for Self-Amplified Spontaneous Emission Free-Electron Lasers 1820
 
  • G. Zhou, Y. Jiao, J.Q. Wang
    IHEP, Beijing, People’s Republic of China
  • T.O. Raubenheimer, J. Wu
    SLAC, Menlo Park, California, USA
  • C.-Y. Tsai
    HUST, Wuhan, People’s Republic of China
  • C. Yang
    USTC/NSRL, Hefei, Anhui, People’s Republic of China
 
  One of the key challenges in scientific researches based on free-electron lasers (FELs) is the characterization of the coherence time of the ultra-fast hard x-ray pulse, which fundamentally influences the interaction process between x-ray and materials. Conventional optical methods, based on autocorrelation, is very difficult to realize due to the lack of mirrors. Here, we experimentally demonstrate a conceptually new coherence time characterization method and a coherence time of 174.7 attoseonds has been measured for the 6.92 keV FEL pulses at Linac Coherent Light Source. In our experiment, a phase shifter is adopted to control the cross-correlation between x-ray and microbunched electrons. This approach provides critical temporal coherence diagnostics for x-ray FELs, and is decoupled from machine parameters, applicable for any photon energy, radiation brightness, repetition rate and FEL pulse duration, etc.
The work was supported by the US Department of Energy (DOE) under contract DE-AC02-76SF00515 and the US DOE Office of Science Early Career Research Program grant FWP-2013-SLAC-100164.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPRB062  
About • paper received ※ 01 May 2019       paper accepted ※ 28 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRB090 Preliminary Considerations of Atomic Inner-Shell X-Ray Laser for Self-Seeding at LCLS-II 1871
 
  • A. Halavanau, C. Pellegrini, J. Wu
    SLAC, Menlo Park, California, USA
  • A.I. Benediktovitch
    EuXFEL, Hamburg, Germany
  • N. Rohringer
    Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
 
  Funding: This work was supported by the U.S. Department of Energy Contract No. DE-AC02-76SF00515.
The atomic inner-shell X-ray lasing, induced by the irradiation of focused XFEL SASE pulses, was demonstrated in gases, liquid jets and solids. In this proceeding, we discuss the possible use of this concept in self-seeding scheme at LCLS-II. We provide a preliminary study of different lasing media and corresponding SASE XFEL parameters. For the case of noble gas inner-shell X-ray laser, we study the requirements for gas pressure and XFEL pulse focusing. Finally, we discuss possible designs of this system and its advantages in LCLS-II operations.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPRB090  
About • paper received ※ 13 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPTS093 Emittance Preservation for LCLS-II-HE Project 3333
 
  • J. Wu, T.O. Raubenheimer, M.D. Woodley
    SLAC, Menlo Park, California, USA
  • J. Qiang
    LBNL, Berkeley, California, USA
 
  Funding: The work was supported by the US Department of Energy (DOE) under contract DE-AC02-76SF00515 and the US DOE Office of Science Early Career Research Program grant FWP-2013-SLAC-100164.
A small transverse slice emittance at the undulator entrance is essential for high performance of the free electron laser. To achieve this, preservation of the phase space density of the electron bunch during acceleration and compression is absolutely necessary. The LCLS-II-HE is designed to transport a 100 pC bunch with an emittance of ~0.3 mm-mrad with minimal emittance dilution. However, in simulations starting from a normalized emittance on the order of 0.1 mm-mrad, the emittance growth is significant. In this paper, the sources of emittance growth are studied along the accelerator, in particular, around the laser-heater, the two bunch compressors. We have investigated mechanisms of emittance growth such as space charge, coherent synchrotron radiation, chromatic aberration, and spurious dispersion. Due to the extremely small emittance from the injector, 3-D space charge effect is important to determine the space charge dominated region and emittance dominated region. With this understanding, emittance preservation schemes are proposed. Studies are carried out with IMPACT simulation code, as well as ASTRA and ELEGANT.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPTS093  
About • paper received ※ 23 May 2019       paper accepted ※ 24 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)