Author: Woodley, M.D.
Paper Title Page
WEPTS093 Emittance Preservation for LCLS-II-HE Project 3333
 
  • J. Wu, T.O. Raubenheimer, M.D. Woodley
    SLAC, Menlo Park, California, USA
  • J. Qiang
    LBNL, Berkeley, California, USA
 
  Funding: The work was supported by the US Department of Energy (DOE) under contract DE-AC02-76SF00515 and the US DOE Office of Science Early Career Research Program grant FWP-2013-SLAC-100164.
A small transverse slice emittance at the undulator entrance is essential for high performance of the free electron laser. To achieve this, preservation of the phase space density of the electron bunch during acceleration and compression is absolutely necessary. The LCLS-II-HE is designed to transport a 100 pC bunch with an emittance of ~0.3 mm-mrad with minimal emittance dilution. However, in simulations starting from a normalized emittance on the order of 0.1 mm-mrad, the emittance growth is significant. In this paper, the sources of emittance growth are studied along the accelerator, in particular, around the laser-heater, the two bunch compressors. We have investigated mechanisms of emittance growth such as space charge, coherent synchrotron radiation, chromatic aberration, and spurious dispersion. Due to the extremely small emittance from the injector, 3-D space charge effect is important to determine the space charge dominated region and emittance dominated region. With this understanding, emittance preservation schemes are proposed. Studies are carried out with IMPACT simulation code, as well as ASTRA and ELEGANT.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPTS093  
About • paper received ※ 23 May 2019       paper accepted ※ 24 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)