Paper |
Title |
Page |
TUPRB021 |
Undulator Radiation Dose Caused by Synchrotron Radiation at the European XFEL |
1724 |
|
- S. Liu
DESY, Hamburg, Germany
- Y. Li, F. Wolff-Fabris
EuXFEL, Schenefeld, Germany
|
|
|
Radiation damage of the undulators is a big concern for the light sources. At the European XFEL (EuXFEL), dosimeters based on on-line Radfets are used for the un-dulator radiation dose measurements. However, since the Radfets are not only sensitive to the electrons and neu-trons but also to the photons, it can capture the synchro-tron radiation (SR) generated in the undulators, which is not considered to be the main source for undulator radia-tion damage. Therefore, it is important to estimate the contribution of synchrotron radiation to the radiation doses measured by the Radfets. For this purpose, we have first calculated the synchrotron radiation profile using SPECTRA, and then put the profile into the tracking code BDSIM to track it through the whole undulator beam line. The radiation doses from SR have been simulated and compared with the measured values. The differences in the radiation doses measured by the Radfets before and after Pb shielding will also be presented.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2019-TUPRB021
|
|
About • |
paper received ※ 30 April 2019 paper accepted ※ 22 May 2019 issue date ※ 21 June 2019 |
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
TUPRB025 |
Harmonic Lasing of the European XFEL in the Angstrom Regime |
1740 |
|
- E. Schneidmiller, F. Brinker, W. Decking, D. Nölle, M.V. Yurkov, I. Zagorodnov
DESY, Hamburg, Germany
- N. Gerasimova, J. Grünert, N.G. Kujala, J. Laksman, Y. Li, J. Liu, Th. Maltezopoulos, I. Petrov, L. Samoylova, S. Serkez, H. Sinn, F. Wolff-Fabris
EuXFEL, Schenefeld, Germany
|
|
|
Harmonic lasing in XFELs is an opportunity to extend the photon energy range of existing and planned X-ray FEL user facilities. Contrary to nonlinear harmonic generation, harmonic lasing can provide much more intense, stable, and narrow-band FEL beam. Another interesting application is Harmonic Lasing Self-Seeding (HLSS) that allows to improve longitudinal coherence and spectral power of a Self-Amplified Spontaneous Emission (SASE) FEL. This concept was successfully tested at FLASH2 in the range of 4.5 - 15 nm and at PAL XFEL at 1 nm. In this contribution we present recent results from the European XFEL where we successfully demonstrated operation of HLSS FEL at 5.9 A, thus pushing harmonic lasing for the first time into the Angstrom regime.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2019-TUPRB025
|
|
About • |
paper received ※ 09 May 2019 paper accepted ※ 23 May 2019 issue date ※ 21 June 2019 |
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|