Paper | Title | Page |
---|---|---|
WEPGW095 | Coherent Transition Radiation Spatial Imaging as a Bunch Length Monitor | 2713 |
|
||
Funding: This work was supported by the EU under Grant Agreement No. 624890 and the STFC Cockcroft Institute core Grant No. ST/G008248/1. High-resolution bunch length measurement is a key component in the optimisation of beam quality in FELs, storage rings, and plasma-based accelerators. Simulations have shown that the profile of a coherent transition radiation (CTR) image produced by a charged particle beam is sensitive to bunch length and can thus be used as a diagnostic. This contribution presents the development progress of a novel bunch length monitor based on imaging the spatial distribution of CTR. Due to the bunch lengths studied, 10fs-100fs FWHM, the radiation of interest was in the THz range. This led to the development of a THz imaging system, which can be applied to both high and low energy electron beams. The associated benefits of this imaging distribution methodology over the typical angular distribution measurement are discussed. Building upon preliminary multi-shot proof of concept results last year, a new series of experiments have been conducted in the short pulse facility (SPF) at MAX IV. Single-shot measurements have been used to measure the exact point of maximum compression. Analysis from the proof of concept results last year, and initial results from the new measurements this year are discussed. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPGW095 | |
About • | paper received ※ 14 May 2019 paper accepted ※ 21 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPGW026 | Status of the Horizon 2020 EuPRAXIA Conceptual Design Study | 3638 |
|
||
Funding: This work was supported by the European Union’s Horizon 2020 Research and Innovation programme under grant agreement No. 653782. The Horizon 2020 Project EuPRAXIA (European Plasma Research Accelerator with eXcellence In Applications) is producing a conceptual design report for a highly compact and cost-effective European facility with multi-GeV electron beams accelerated using plasmas. EuPRAXIA will be set up as a distributed Open Innovation platform with two construction sites, one with a focus on beam-driven plasma acceleration (PWFA) and another site with a focus on laser-driven plasma acceleration (LWFA). User areas at both sites will provide access to FEL pilot experiments, positron generation and acceleration, compact radiation sources, and test beams for HEP detector development. Support centres in four different countries will complement the pan-European implementation of this infrastructure. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPGW026 | |
About • | paper received ※ 26 April 2019 paper accepted ※ 20 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPRB061 | Simulations and Measurements of Coherent Synchrotron Radiation at the MAX-IV Short Pulse Facility | 712 |
|
||
The Coherent Synchrotron Radiation (CSR) interaction is a source of unwanted correlated energy spread in short-bunch Free-Electron Lasers (FEL), diluting the desired FEL spectrum and reducing the total brightness of the light source. Many accelerator codes make use of 1-dimensional approximations in the calculation of the CSR-wake, which breaks down for bunch dimensions typical within bunch compressor dipoles in FELs. General Particle Tracer simulations of the CSR interaction make use of the 3-dimensional bunch distribution, making it advantageous in modelling the short-bunch, high aspect ratio regimes typical of modern 4th-generation light sources. Measurements of THz CSR emitted from the final bunch compressor dipole of the SP02 beamline at the MAX-IV Short Pulse Facility (SPF) were used, alongside start-to-end GPT and Elegant simulations, to characterize coherent radiation emission across a broad range of bunch lengths. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPRB061 | |
About • | paper received ※ 14 May 2019 paper accepted ※ 20 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEZZPLS2 | EuPRAXIA, a Step Toward a Plasma-Wakefield Based Accelerator With High Beam Quality | 2291 |
|
||
Funding: European Union’s Horizon 2020 research and innovation programme under grant agreement No. 653782 The EuPRAXIA project aims at designing the world’s first accelerator based on plasma-wakefield advanced technique, which can deliver a 5 GeV electron beam with simultaneously high charge, low emittance and low energy spread to user’s communities. Such challenging objectives can only have a chance to be achieved when particular efforts are dedicated to identify the subsequent issues and to find the way to solve them. Many injection/acceleration schemes and techniques have been explored by means of thorough simulations in more than ten European institutes to sort out the most appropriate ones. The specific issues of high charge, high beam quality and beam extraction then transfer to the user’s applications, have been tackled with many innovative approaches*. This article highlights the different advanced methods that have been employed by the EuPRAXIA collaboration and the preliminary results obtained. The needs in terms of laser and plasma parameters for such an accelerator are also summarized. *- in 2017: Phys. Plasmas, 24,10,103120; Nat. Commun.8,15705; - in 2018: NIMA, 909,84-89; NIMA, 909,49-53; Phys. Rev.Acc. Beams, 21,111301; NIMA, 909,54-57; Phys. Rev.Acc. Beams, 21,052802; NIMA, 909,282-285 |
||
![]() |
Slides WEZZPLS2 [5.157 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEZZPLS2 | |
About • | paper received ※ 12 April 2019 paper accepted ※ 17 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |