Author: Willeke, F.J.
Paper Title Page
MOZZPLS1 eRHIC Design Overview 45
 
  • C. Montag, G. Bassi, J. Beebe-Wang, J.S. Berg, M. Blaskiewicz, A. Blednykh, J.M. Brennan, S.J. Brooks, K.A. Brown, K.A. Drees, A.V. Fedotov, W. Fischer, D.M. Gassner, W. Guo, A. Hershcovitch, C. Hetzel, D. Holmes, H. Huang, W.A. Jackson, J. Kewisch, Y. Li, C. Liu, H. Lovelace III, Y. Luo, F. Méot, M.G. Minty, R.B. Palmer, B. Parker, S. Peggs, V. Ptitsyn, V.H. Ranjbar, G. Robert-Demolaize, S. Seletskiy, V.V. Smaluk, K.S. Smith, S. Tepikian, P. Thieberger, D. Trbojevic, N. Tsoupas, S. Verdú-Andrés, W.-T. Weng, F.J. Willeke, H. Witte, Q. Wu, W. Xu, A. Zaltsman, W. Zhang
    BNL, Upton, Long Island, New York, USA
  • E. Gianfelice-Wendt
    Fermilab, Batavia, Illinois, USA
  • Y. Hao
    FRIB, East Lansing, Michigan, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
The Electron-Ion Collider (EIC) is being envisioned as the next facility to be constructed by the DOE Nuclear Physics program. Brookhaven National Laboratory is proposing eRHIC, a facility based on the existing RHIC complex as a cost effective realization of the EIC project with a peak luminosity of 1034 cm-2 sec-1. An electron storage ring with an energy range from 5 to 18 GeV will be added in the existing RHIC tunnel. A spin-transparent rapid-cycling synchrotron (RCS) will serve as a full-energy polarized electron injector. Recent design improvements include reduction of the IR magnet strengths to avoid the necessity for Nb3Sn magnets, and a novel hadron injection scheme to maximize the integrated luminosity. We will provide an overview of this proposed project and present the current design status.
 
slides icon Slides MOZZPLS1 [5.428 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOZZPLS1  
About • paper received ※ 14 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRB072 eRHIC in Electron-Ion Operation 738
 
  • W. Fischer, E.C. Aschenauer, E.N. Beebe, M. Blaskiewicz, K.A. Brown, D. Bruno, K.A. Drees, C.J. Gardner, H. Huang, T. Kanesue, C. Liu, M. Mapes, G.T. McIntyre, M.G. Minty, C. Montag, S.K. Nayak, M. Okamura, V. Ptitsyn, D. Raparia, J. Sandberg, K.S. Smith, P. Thieberger, N. Tsoupas, J.E. Tuozzolo, F.J. Willeke, A. Zaltsman, A. Zelenski
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by U.S. DOE under contract No DE-AC02-98CH10886 with the U.S. Department of Energy.
The design effort for the electron-ion collider eRHIC has concentrated on electron-proton collisions at the highest luminosities over the widest possible energy range. The present design also provides for electron-nucleon peak luminosities of up to 4.7·1033 cm-2s−1 with strong hadron cooling, and up to 1.7·1033 cm-2s−1 with stochastic cooling. Here we discuss the performance limitations and design choices for electron-ion collisions that are different from the electron-proton collisions. These include the ion bunch preparation in the injector chain, acceleration and intrabeam scattering in the hadron ring, path length adjustment and synchronization with the electron ring, stochastic cooling upgrades, machine protection upgrades, and operation with polarized electron beams colliding with either unpolarized ion beams or polarized He-3.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPRB072  
About • paper received ※ 14 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRB090 Simulation Challenges for eRHIC Beam-Beam Study 785
 
  • Y. Luo, F.J. Willeke
    BNL, Upton, Long Island, New York, USA
  • Y. Hao
    FRIB, East Lansing, Michigan, USA
  • J. Qiang
    LBNL, Berkeley, California, USA
  • Y. Roblin, H. Zhang
    JLab, Newport News, Virginia, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
The 2015 Nuclear Science Advisory Committee Long Rang Plan identified the need for an electron-ion collider (EIC) facility as a gluon microscope with capabilities beyond those of any existing accelerator complex. To reach the required high energy, high luminosity, and high polarization, the eRHIC design, based on the existing heavy ion and polarized proton collider RHIC, adopts a very small \beta-function at the interaction points, a high collision repetition rate, and a novel hadron cooling scheme. A full crossing angle of 22 mrad and crab cavities for both electron and proton rings are required. In this article, we will present the high priority R\&D items related to the beam-beam interaction studies for the current eRHIC design, the simulation challenges, and our plans and methods to address them. Recent progresses on this project are reported too.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPRB090  
About • paper received ※ 14 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRB091 Combined Strong-Strong and Weak-Strong Beam-Beam Simulations for Crabbed Collision in eRHIC 788
 
  • Y. Luo, G. Bassi, M. Blaskiewicz, W. Fischer, Y. Hao, C. Montag, V. Ptitsyn, V.V. Smaluk, F.J. Willeke
    BNL, Upton, Long Island, New York, USA
  • K. Ohmi
    KEK, Ibaraki, Japan
  • J. Qiang
    LBNL, Berkeley, California, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
In the eRHIC, to compensate the geometric luminosity loss, local crab cavities on both sides of the interaction points are to adopted. The previous strong-strong beam-beam simulations showed that the luminosity degradation depends on the crab cavity frequency, proton synchrotron tune, proton bunch length and so on. In this article, we apply a combined strong-strong and weak-strong beam-beam simulation to investigate the incoherent and coherent beam motions with crabbed collison, and to calculate more realistic beam emittance growth rates and luminosity degradation rate.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPRB091  
About • paper received ※ 14 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRB093 eRHIC Electron Ring Design Status 794
 
  • C. Montag, M. Blaskiewicz, C. Hetzel, D. Holmes, Y. Li, H. Lovelace III, V. Ptitsyn, K.S. Smith, S. Tepikian, F.J. Willeke, H. Witte, W. Xu
    BNL, Upton, Long Island, New York, USA
  • E. Gianfelice-Wendt
    Fermilab, Batavia, Illinois, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
For the proposed electron-ion collider eRHIC, an electron storage ring will be installed in the existing RHIC tunnel. To reach the high luminosity of up to 1034 cm-2 sec-1, beam currents up to 2.5A have to be stored. Besides high luminosity the physics program requires spin polarization levels of 70 percent, with both spin "up" and spin "down" orientations present in the fill. This is only feasible by using a full-energy spin polarized injector that replaces bunches faster than the depolarization rate. To limit the repetition rate of that injector to about one hertz, the polarization lifetime in the storage ring has to be maximized by proper spin matching and countermeasures for the machine misalignments. We will give an overview of the electron storage ring design.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPRB093  
About • paper received ※ 13 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPGW102 CBETA - Novel Superconducting ERL 1651
 
  • R.J. Michnoff, J.S. Berg, S.J. Brooks, J. Cintorino, Y. Hao, C. Liu, G.J. Mahler, F. Méot, S. Peggs, V. Ptitsyn, T. Roser, P. Thieberger, S. Trabocchi, D. Trbojevic, N. Tsoupas, J.E. Tuozzolo, F.J. Willeke, H. Witte
    BNL, Upton, Long Island, New York, USA
  • N. Banerjee, J. Barley, A.C. Bartnik, I.V. Bazarov, D.C. Burke, J.A. Crittenden, L. Cultrera, J. Dobbins, S.J. Full, F. Furuta, R.E. Gallagher, M. Ge, C.M. Gulliford, B.K. Heltsley, G.H. Hoffstaetter, D. Jusic, R.P.K. Kaplan, V.O. Kostroun, Y. Li, M. Liepe, W. Lou, J.R. Patterson, P. Quigley, D.M. Sabol, D. Sagan, J. Sears, C.H. Shore, E.N. Smith, K.W. Smolenski, V. Veshcherevich, D. Widger
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • D. Douglas
    Douglas Consulting, York, Virginia, USA
  • M. Dunham, C.E. Mayes
    SLAC, Menlo Park, California, USA
 
  Funding: New York State Research&Development Authority - NYSERDA agreement number 102192
We are successfully commissioning a unique Cornell University and Brookhaven National Laboratory Electron Recovery Linac (ERL) Test Accelerator ’CBETA’ [1]. The ERL has four accelerating passes through the supercon-ducting linac with a single Fixed Field Alternating Linear Gradient (FFA-LG) return beam line built of the Halbach type permanent magnets. CBETA ERL accelerates elec-trons from 42 MeV to 150 MeV, with the 6 MeV injec-tor. The novelties are that four electron beams, with ener-gies of 42, 78, 114, and 150 MeV, are merged by spreader beam lines into a single arc FFA-LG beam line. The elec-tron beams from the Main Linac Cryomodule (MLC) pass through the FFA-LG arc and are adiabatically merged into a single straight line. From the straight section the beams are brought back to the MLC the same way. This is the first 4 pass superconducting ERL and the first single permanent magnet return line.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPGW102  
About • paper received ※ 13 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTS103 The Progress of High Current High Bunch Charge Polarized Electron HVDC Gun 2160
 
  • E. Wang, I. Ben-Zvi, R.F. Lambiase, W. Liu, O.H. Rahman, J. Skaritka, F.J. Willeke
    BNL, Upton, Long Island, New York, USA
  • I. Ben-Zvi
    Stony Brook University, Stony Brook, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
The high current and high bunch charge polarized electron source is essential for cost reduction of eRHIC. It aims to deliver electron beam with 10 mA average current and 5.3 nC bunch charge. We analyzed the mechanism of cathode degradation and proposed using a large strain superlattice GaAs photocathode in a high voltage DC gun to increase the charge lifetime above kilo Coulomb. The gun has been designed and fabricated and expected to start commissioning by the mid of this year. In this paper, we will present the modeling of ion back bombardment and cathode degrading. We proposed an anode offset scheme to increase cathode lifetime. Also, we will describe the details of gun design and the strategies to demonstrate high current high charge polarized electron beam from this source.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPTS103  
About • paper received ※ 15 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMP052 Proposed Hadron Injection into the Future eRHIC Collider 2451
 
  • N. Tsoupas, F. Méot, C. Montag, V. Ptitsyn, D. Trbojevic, F.J. Willeke, W. Zhang
    BNL, Upton, Long Island, New York, USA
 
  Funding: *Work Supported by the US Department of Energy.
The future eRHIC collider * will collide 5, 10, and 18 GeV polarized electrons with 250 GeV polarized protons, 210 GeV/u polarized 3He ions and other heavy ion species which are already produced by the RHIC accelerator. To increase the luminosity during collisions the number of circulating hadron bunches will increase to 330 and this requires a modification of the injection hadrons into the RHIC accelerator. This paper describes this injection scheme which is compatible with a design option which uses two hadron rings, one ring for accelerating the hadron beam and the other ring for storing the circulating beam to increase even further the integrated luminosity of the electron-hadron collisions. This two-hadron-rings option will be presented in the conference.
tsoupas@bnl.gov
* ICFA BD Newsletter No. 74 http://icfa-bd.kek.jp/
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPMP052  
About • paper received ※ 15 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)